IBIS-ATM Update: SerDes Modeling and IBIS

(Originally presented at the Sept 11th Summit in Beijing)
Presented by: Todd Westerhoff, SiSoft
twesterh@sisoft.com

IBIS Summit
Tokyo, Japan
September 14, 2007
Typical SerDes Analysis Flow

- Network Characterization
- Communication Analysis
- Analysis
- TX EQ
- RX EQ
- With TX, RX EQ
Why Two Analysis Steps?

• Performance
 – Communications analysis processes ~ 1,000,000 bits per minute
 – SPICE-based analysis throughput is much less

• Leverage existing tools and techniques
 – Communications methods & algorithms established in other domains
 – Equalization and clock recovery well suited to algorithmic description
 – Modeling/analysis algorithms are suitable for commercial numerical computation tools
Network Characterization

- Uses circuit analysis techniques to determine network behavior under reference conditions
- Characterization can take multiple forms
 - Impulse / step / pulse response (time-domain)
 - Transfer function (frequency-domain)
Communications Analysis

- Uses circuit characterization data to predict link behavior
- Many methods exist – fundamental concepts are similar, but implementation details vary
 - Commercial numerical computation tools
 - Collaboration efforts (StatEye)
 - In-house SerDes vendor solutions
 - Commercial systems-level analysis tools
SerDes Analysis

• Serial Links present new analysis requirements
 – Model SerDes TX/RX equalization
 – Model RX clock recovery behavior
 – Predict link behavior over $>> 10^7$ bits
 – Predict link bit error rate
 – Protect SerDes vendor IP

• Serial Link analysis often combines analytical methods
 – Circuit analysis (network characterization)
 – Communications analysis (equalization, clock recovery modeling)

• Modeling standards are essential, there can be no interoperable models or analysis tools without them
IBIS-ATM SerDes Task Group

• Goal: SerDes Rx/TX model interoperability
 – Multiple EDA platforms
 – Multiple SerDes vendor models
 – Protect SerDes vendor IP
• IBIS-ATM committee participation
 – EDA: Agilent, Cadence, Mentor, SiSoft
 – Semiconductor: IBM, Intel, Micron, ST-Micro, TI, Xilinx
 – System: Cisco
• Two part modeling standard
 – Characterization model: existing IBIS syntax models TX / RX analog characteristics
 – Algorithmic model: equalization, clock recovery, device optimization algorithms
IBIS-AMI Serial Link Analysis

TX

- Serializer
- Transmit Equalizer
- Package Interconnect
- System Interconnect
- Package Interconnect

RX

- Receive Equalizer
- Clock Recovery
- Data Recovery

TX EQ
LTI or non-LTI

- TX Equalization
- TX Optimization

Channel & Analog I/O
Linear, Time-Invariant

- Channel Characterization (Impulse response)

RX EQ, CDR
LTI or non-LTI

- RX Equalization
- RX Clock Recovery
- RX Optimization
IBIS-ATM Algorithmic Models

• Communication models provided as [binary] code
 – Fast, efficient execution
 – Protects vendor IP
 – Extensible modeling capability
 – Allows models to be developed in multiple languages

• Standardized execution interface
 – Module loading mechanism & call signature
 – Data input/output formats

• Standardized model parameter interface
 – “Reserved parameters” interpreted by EDA platforms
 – Model-specific parameters can be exposed to and set by end-users
IBIS-ATM Algorithmic Models

Impulse Response Processing
- Model Settings

 ![Channel Impulse Response](image)

 ![Model Settings](image)

 ![TX "INIT"](image)

 ![With TX EQ](image)

 ![RX "INIT"](image)

 ![With TX, RX EQ](image)

Waveform Processing
- Model Settings

 ![Stimulus](image)

 ![Model Settings](image)

 ![TX "GETWAVE"](image)

 ![With TX EQ](image)

 ![RX "GETWAVE"](image)

 ![With TX, RX EQ](image)

 ![Recovered Clock](image)

 ![With TX, RX EQ](image)
Executable (DLL) Call Arguments

- **Init** (impulse response processing)
 - Bit time
 - Number of waveform samples per bit
 - Number of crosstalk aggressors
 - Channel impulse response(s)
 - Model parameters and values
 - Pointers to free memory, data return area

- **Getwave** (waveform processing)
 - Input waveform(s)
 - Pointers to data return area
 - Equalized waveform
 - Clock times
 - Optimized parameters
Model Parameters

Additional data passed between executable model & simulator:

• Model-specific parameters
 – Allow IP vendors to define data required for / provided by a specific model
 – Defined parameter declaration and usage format
 • Allows end-users to set and display model-specific data

• Reserved parameters
 – Predefined parameter list used by EDA tools to alter analysis flow
 – Allows models to tell EDA platform what data the model does/doesn’t provide
IBIS-ATM Status

• Original proposal submitted by Cadence & IBM
 – Current version authored by Cadence, Mentor, SiSoft

• First draft of BIRD approved by IBIS-ATM task group for prototype model & EDA platform development
 – Prove interoperability & refine proposal before bringing back to IBIS Open Forum

• Subcommittee work, presentations & BIRD available on-line:
 – http://www.vhdl.org/pub/ibis/macromodel_wip/

• Public TX/RX models, modeling “toolkits” will be available
Next Steps

<table>
<thead>
<tr>
<th></th>
<th>Preliminary approval by IBIS-ATM subcommittee</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>Complete BIRD documentation</td>
</tr>
<tr>
<td>√</td>
<td>Develop sample models & prototype EDA integration; demonstrate interoperability</td>
</tr>
</tbody>
</table>

Target:

- **Sep 2007**: Refine BIRD based on prototype experience
- **Oct 2007**: Bring to IBIS-ATM task group for final approval
- Bring BIRD to IBIS Open Forum for approval
- Incorporate BIRD into updated IBIS specification