Interconnect Modeling Using IBIS-ISS and Touchstone

Michael Mirmak
Intel Corporation
michael.mirmak@intel.com

EDICON IBIS Summit
Boston, Massachusetts
September 13, 2017

Updated from May 10, 2017 SPI2017 IBIS Summit presentation
Presented by Mike LaBonte, SiSoft

IBIS Summit at EDICON 2017
Agenda

- History
- The Need for Improved Interconnect Support
- Principles of the Interconnect Proposal
 - Structure
 - Terminals, Models and Sets
 - New Keywords
- An Example Explained
- Summary
History

- Interconnect Task Group resumed meeting in early 2014
 - Received draft BIRD from Walter Katz (SiSoft) to support IBIS-ISS packages within IBIS

- BIRD189.4 available for review
 - http://www.ibis.org/birds/birds189.4.docx
 - ~40 pages with examples
 - Comments welcome

- Intended for IBIS Version 7.0

- Brief overview with some key points is given here
Why Update Interconnect Modeling?

- Improve package models with IBIS-ISS (a Synopsys HSPICE* subset) and Touchstone support

- Package modeling in IBIS unchanged since 2000
 - [Pin], [Package], [Package Model]
 - [Alternate Package Models] selector added
 - Limited support of loss, crosstalk and/or partitioning

- EBD (Electrical Board Description) for boards: no coupling and limited package model application

- IBIS, IBIS-ISS, Touchstone 2.0 and ICM are separate specifications
 - Limited interaction between them for package modeling
 - ICM (Interconnect Model) never adopted by industry
Features of the Interconnect Proposal

- Supports…
 - IBIS-ISS and Touchstone models (common in industry)
 - Both I/O and supply (POWER and GND) connections
 - (New) optional Die pad interface between Pins and Buffers
 - I/O pin_names as terminal qualifiers
 - May have optional Aggressor_Only designation
 - POWER and GND terminal qualifiers by pin_name, pad_name, signal_name or [Pin Mapping] bus_label for rail connections with direct or combined terminals
 - Plus many other features not covered here…

A few objectives for the Interconnect Modeling proposal
Structure of the Interconnect Proposal

Introduces optional Die Pad interface for terminals separate from Buffer and Pin terminals

- **NEW!**
 - pin_names, signal_names, and model_names from the [Pin] keyword

[Model] buffer definition but with explicitly identified terminals
Relates to Physical Structures

One-to-one path connection; Die Pad interface optional; Aggressor_Only designation optional.

IBIS Summit at EDICON 2017
Terminals at Buffer, Die Pad and Pin Interfaces

Original IBIS (4.0 and earlier)
- Pins are explicit
- Buffer terminals implicit in [Model]
- Die pad terminals same as buffer terminals
- Packages defined connections between pins and buffers

Current Proposal
- Die pad terminals are now explicit
- Buffer terminals are now explicit
- [Pin]s are… still pins
- Separate interconnect definitions can be created between …
 - Pin-to-Die pad terminals,
 - Die pad-to-Buffer terminals,
 - Pin-to-Buffer terminals (still) supported
Physical Rails (Can be Merged)
New Keywords and Subparameters
(Limited Discussion Here)

- [Bus Labels] | bus_label
- [Die Supply Pads] | pad_name, optional bus_label
- [Interconnect Model]/[End Interconnect Model]
 - Param | parameter passing
 - File_IBIS-ISS | names IBIS-ISS file
 - File_TS | names Tstone file
 - Number_of_terminals=<value> | number of terminals
 - <terminal lines> | described later
- [Interconnect Model Set]/[End Interconnect Model Set]
- [Interconnect Model Set Selector]/[End Interconnect Model Set Selector]
Interconnect Models

- Connections between terminals with IBIS-ISS or Touchstone files
- Terminal connection points at Buffer, Die pad, or Pin interfaces
- Identifies rail or I/O terminals
- Allows pin_name, signal_name, pad_name, or bus_label terminal qualifiers for rails (and pin_name for I/O terminals)
- Identifies whether a coupled signal is only an aggressor or also “experiences” coupling from other sources

How package and on-die electrical information is generated and delivered today
[Interconnect Model Set]s

- Groups Interconnect Models
- Can be used (and is recommended) to establish a complete path
- Can be grouped with selection controls for individual simulations, similar to [Model] and [Model Selector]

Some Example Groupings and Applications
- Separate sets, one per interface (e.g., memory, network)
- Separate sets for coupled vs. single-line simulations
- Different sets for different power delivery network complexities
 - POWER connected at single pin, single buffer terminal
 - POWER connected through multiple pins, rails to individual buffer terminals
<Terminal lines> Syntax

- All column entries on one line:

 `<Terminal_number>` `<Terminal_type>`
 `<Terminal_type_qualifier>` `<Qualifier_entry>`
 `[Aggressor_Only]

- `<Terminal_number>` is **IBIS-ISS node position** or **Touchstone port number**

- Allowable `<Terminal_type>` names and associations next
Allowable `<Terminal_type>` Associations

<`Terminal_number>` `<Terminal_type>` `<Terminal_type_qualifier>` `<Qualifier_entry>` [Aggressor_Only]

<table>
<thead>
<tr>
<th>Terminal_type</th>
<th>Terminal_type_qualifier</th>
<th>Aggressor_Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pin_name</td>
<td>signal_name</td>
</tr>
<tr>
<td>Pin_I/O</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pad_I/O</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Buffer_I/O</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pin_Rail</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Pad_Rail</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Buffer_Rail</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Pullup_ref</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pulldown_ref</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Power_clamp_ref</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gnd_clamp_ref</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ext_ref</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<Qualifier_entry>: ”X” I/O pin_name; “Y,” or “Z”: POWER or GND name. Optional “A”: “Aggressor_Only”
Example Showing Connections

Buffer Terminals Die Pad Terminals Pins

C1 VDD POWER
A1 DQ1 DATA_MODEL
C2 VSS GND
A2 DQ2 DATA_MODEL

VDDQ
VSSQ
The [Die Supply Pads] keyword establishes pad_name <Qualifier_entries> for rails, and associates them with signal_name (and optionally with bus_label entries).

```
[Die Supply Pads] signal_name bus_label
| pad_name
  VDDQ    VDD
  VSSQ    VSS
```
[Interconnect Model] for Buffer-to-Die Pad Side

[Interconnect Model Set] Full_ISS_PDN
| [Interconnect Model] Partial_ISS_buf_pad
| File_IBIS-ISS buf_pad.iss buf_pad_2_typ
Number_of_terminals = 10
| 1 Pad_I/O pin_name A1 | DQ1 (DQ signal)
 2 Pad_I/O pin_name A2 | DQ2 (DQ signal)
 3 Pullup_ref pin_name A1 | VDD (POWER connection)
 4 Pulldown_ref pin_name A1 | VSS (GND connection)
 5 Buffer_I/O pin_name A1 | DQ1 (DQ signal)
 6 Pullup_ref pin_name A2 | VDD (POWER connection)
 7 Pulldown_ref pin_name A2 | VSS (GND connection)
 8 Buffer_I/O pin_name A2 | DQ2 (DQ signal)
| 9 Pad_Rail pad_name VDDQ | VDD POWER
 10 Pad_Rail pad_name VSSQ | VSS GND
| [End Interconnect Model]
[Interconnect Model] for
Buffer-to-Die Pad Side (Expanded)

[Interconnect Model Set] Full_ISS_PDN
|
[Interconnect Model] Partial_ISS_buf_pad
|
File_IBIS-ISS buf_pad.iss buf_pad_2_typ
Number_of_terminals = 10
|
1 Pad_I/O pin_name A1 | DQ1 (DQ signal)
2 Pad_I/O pin_name A2 | DQ2 (DQ signal)
|
| POWER and GND terminals with pad_names and pin_names
3 Pullup_ref pin_name A1 | VDD (POWER connection)
4 Pulldown_ref pin_name A1 | VSS (GND connection)
5 Buffer_I/O pin_name A1 | DQ1 (DQ signal)
6 Pullup_ref pin_name A2 | VDD (POWER connection)
7 Pulldown_ref pin_name A2 | VSS (GND connection)
8 Buffer_I/O pin_name A2 | DQ2 (DQ signal)
|
| POWER and GND terminals with signal_names
9 Pad_Rail pad_name VDDQ | VDD POWER
10 Pad_Rail pad_name VSSQ | VSS GND
|
[End Interconnect Model]
[Interconnect Model] for Die Pad-to-Pin Side

Buffer Terminals

Die Pad Terminals

Pins

C1 VDD POWER
A1 DQ1 DATA_MODEL
C2 VSS GND

A2 DQ2 DATA_MODEL

[Interconnect Model] Partial_ISS_pad_pin_2

File_IBIS-ISS pad_pin.iss pad_pin_2_typ
Number_of_terminals = 8

1 Pin_I/O pin_name A1 | DQ1 (DQ signal)
2 Pin_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with signal_names
3 Pin_Rail signal_name VDD | VDD (POWER connection)
4 Pin_Rail signal_name VSS | VSS (GND connection)

POWER and GND terminals with pad_names
5 Pad_I/O pin_name A1 | DQ1 (DQ signal)
6 Pad_I/O pin_name A2 | DQ2 (DQ signal)

[End Interconnect Model]

[End Interconnect Model Set]
[Interconnect Model] for Die Pad-to-Pin Side (Expanded)

File and subcircuit

[Interconnect Model] Partial_ISS_pad_pin_2

File_IBIS-ISS pad_pin.iss pad_pin_2_typ

Number of terminals = 8

1 Pin_I/O pin_name A1 | DQ1 (DQ signal)
2 Pin_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with signal_names
3 Pin_Rail signal_name VDD | VDD (POWER connection)
4 Pin_Rail signal_name VSS | VSS (GND connection)

POWER and GND terminals with pad_names
5 Pad_I/O pin_name A1 | DQ1 (DQ signal)
6 Pad_I/O pin_name A2 | DQ2 (DQ signal)

POWER and GND terminals with pad_names
7 Pad_Rail pad_name VDDQ | pad_name with VDD
8 Pad_Rail pad_name VSSQ | pad_name with VSS

[End Interconnect Model]

[End Interconnect Model Set]
Complete [Interconnect Model Set] With Both [Interconnect Model]s

[Interconnect Model Set] Full_ISS_PDN

[Interconnect Model] Partial_ISS_buf_pad

File_IBIS-ISS buf_pad.iss buf_pad_2_typ

Number_of_terminals = 10

1 Pad_I/O pin_name A1 | DQ1 (DQ signal)
2 Pad_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with pad_names and pin_names
3 Pullup_ref pin_name A1 | VDD (POWER connection)
4 Pulldown_ref pin_name A1 | VSS (GND connection)
5 Buffer_I/O pin_name A1 | DQ1 (DQ signal)
6 Pullup_ref pin_name A2 | VDD (POWER connection)
7 Pulldown_ref pin_name A2 | VSS (GND connection)
8 Buffer_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with signal_names
9 Pad_Rail signal_name VDDQ | VDD POWER
10 Pad_Rail signal_name VSSQ | VSS GND

[End Interconnect Model] Partial_ISS_pad_pin_2

File_IBIS-ISS pad_pin.iss pad_pin_2_typ

Number_of_terminals = 8

1 Pin_I/O pin_name A1 | DQ1 (DQ signal)
2 Pin_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with signal_names
3 Pin_Rail signal_name VDD | VDD (POWER connection)
4 Pin_Rail signal_name VSS | VSS (GND connection)
5 Pad_I/O pin_name A1 | DQ1 (DQ signal)
6 Pad_I/O pin_name A2 | DQ2 (DQ signal)

| POWER and GND terminals with pad_names
7 Pad_Rail pad_name VDDQ | VDD is signal name
8 Pad_Rail pad_name VSSQ | VSS is signal name

[End Interconnect Model]
Summary

- BIRD189.4 improves IBIS package modeling
 - More revisions coming through the IBIS Interconnect Task Group

- Links IBIS, IBIS-ISS and Touchstone for package models
 - Adds flexible support for package loss, crosstalk and partitioning

- Formalizes and separates Die pads and Buffers

- Other extensions (not covered here) included

New advanced Interconnect format for IBIS Version 7.0!