

IBIS

(I/O Buffer Information Specification)

Version 6.0

Ratified September 20, 2013

© IBIS Open Forum 2013

IBIS Version 6.0

2

Contents
1 General Introduction ... 3

2 Statement of Intent .. 4
3 General Syntax Rules and Guidelines ... 9

3.1 Keyword Hierarchy ... 11

4 File Header Information .. 18

5 Component Description ... 20
6 Buffer Modeling ... 31

6.1 Model Statement .. 31
6.2 Add Submodel Description .. 77

6.3 Multi-Lingual Model Extensions ... 90
6.4 Test Load and Data Description ..133

7 Package Modeling ...137
8 Electrical Board Description ..150

9 Notes on Data Derivation Method ..160
10 Algorithmic Modeling ...166

10.1 Algorithmic Modeling Interface (AMI) ...166
10.2 AMI Executable Model File Programming Guide ...169

10.2.1 Overview ...169
10.2.2 Application Scenarios ..169

10.2.3 Function Signatures ...174
10.2.4 Code Segment Examples..183

10.3 AMI Parameter Definition File Structure ..184
10.4 Reserved Parameters for Data Management ..201

10.5 Jitter and Noise Reserved Parameters ..205
10.6 Repeaters ..221

10.7 Reserved Parameter and Data Type Rule Summary Tables227

11 EMI Parameters ...231

IBIS Version 6.0

3

1 GENERAL INTRODUCTION

This section gives a general overview of the remainder of this document.

Sections 2 and 3 contain general information about the IBIS versions and the general rules and

guidelines. Several progressions of IBIS documents are referenced in Section 2 and in the

discussion below. They are IBIS Version 1.1 (ratified August 1993), IBIS Version 2.1 (ratified as

ANSI/EIA-656 in December 1995), IBIS Version 3.2 (ratified as ANSI/EIA-656-A in October

1999 and renewed on August 17, 2005), IBIS Version 4.2 (ratified as ANSI/EIA-656-B on March 1,

2007), IBIS Version 5.0 (ratified on August 29, 2008), IBIS Version 5.1 (ratified on August 24,

2012), and IBIS Version 6.0 (ratified on September 20, 2013).

The functionality of IBIS follows in Section 3.1 (formerly Section 3A) through Section 8. Sections

3.1 through 6 describe the format of the core functionality of IBIS Version 1.1 and the extensions

in later versions. The data in these sections are contained in .ibs files. Section 7 describes the

package model format of IBIS Version 2.1 and a subsequent extension. Package models can be

formatted within .ibs files or can be formatted (along with the Section file header keywords)

as .pkg files. Section 8 contains the Electrical Board Description format of IBIS Version 3.2.

Along with Section 4 header information, electrical board descriptions must be contained in

separate .ebd files.

Sections 10.1, 1.1, and 11 (formerly Sections 6C, 10, and 11, respectively) are new in IBIS Version

5.0 and contain reference and modeling information related to the algorithmic modeling interface

(AMI) support, and EMI parameters. Sections 6.4 and 10.3 (formerly Sections 6D and 10A,

respectively) are new in IBIS Version 5.1, to place test loads and data appropriately in the keyword

hierarchy and to more fully describe algorithmic models, respectively. Section 10.5 is added in

IBIS Version 6.0, to describe the keyword, AMI parameters, and data flow associated with

repeaters. IBIS Version 6.0 also modifies the organization of the document.

Section 9 contains some notes regarding the extraction conditions and data requirements for IBIS.

This section focuses on implementation conditions based on measurement or simulation for

gathering the IBIS compliant data.

IBIS Version 6.0

4

2 STATEMENT OF INTENT

In order to enable an industry standard method to electronically transport IBIS modeling data

between semiconductor vendors, EDA tool vendors, and end customers, this template is proposed.

The intention of this template is to specify a consistent format that can be parsed by software,

allowing EDA tool vendors to derive models compatible with their own products.

One goal of this template is to represent the current state of IBIS data, while allowing a growth

path to more complex models/methods (when deemed appropriate). This would be accomplished

by a revision of the base template, and possibly the addition of new keywords or categories.

Another goal of this template is to ensure that it is simple enough for semiconductor vendors and

customers to use and modify, while ensuring that it is rigid enough for EDA tool vendors to write

reliable parsers.

Finally, this template is meant to contain a complete description of the I/O elements on an entire

component. Consequently, several models will need to be defined in each file, as well as a table

that equates the appropriate buffer to the correct pin and signal name.

Version 6.0 of this electronic template was finalized by an industry-wide group of experts

representing various companies and interests. Regular “IBIS Open Forum” meetings were held to

accomplish this task.

Changes to the specification are proposed and approved through Buffer Issue Resolution

Documents (BIRDs) . All submitted BIRDs may be viewed through the IBIS Open Forum website,

http://www.eda.org/ibis/.

Commitment to Backward Compatibility. Version 1.0 was the first valid IBIS ASCII file format.

It represents the minimum amount of I/O buffer information required to create an accurate IBIS

model of common CMOS and bipolar I/O structures. Future revisions of the ASCII file added

items considered to be “enhancements” to Version 1.0 to allow accurate modeling of new, or other

I/O buffer structures. Consequently, all future revisions are considered supersets of Version 1.0,

allowing backward compatibility. In addition, as modeling platforms develop support for revisions

of the IBIS ASCII template, all previous revisions of the template must also be supported.

Version 1.1. Version 1.1, (published as “ver1_1.ibs”) is conceptually the same as the 1.0 version

of the IBIS ASCII format (published as "ver1_0.ibs"). However, various comments have been

added for further clarification.

Version 2.0. Version 2.0 maintains backward compatibility with Versions 1.0 and 1.1. All new

keywords and elements added in Version 2.0 are optional. A complete list of changes to the

specification is in the IBIS Version 2.0 Release Notes document (“ver2_0.rn.txt”). Some changes

are also documented in 14 BIRDs:

BIRD2.2 Requiring VIH VIL thresholds for input devices

BIRD3 Multiple power supplies and references

BIRD4 ECL Extensions

BIRD5.4 Pin Mapping for Ground Bounce Simulation

BIRD6.2 Differential Pin Specification

BIRD7.2 Open Specification Completion

BIRD8.2 Specification of V/I data monotonicity

BIRD9.3 Terminator Specification

BIRD10.2 Describing coupling effects in package models

http://www.eda.org/ibis/

IBIS Version 6.0

5

BIRD11.2 Improving common error detection in IBIS_CHK program.

BIRD12.2 Non-Linear Driver Waveforms

BIRD13.2 Clarify Some Conditions of Measurements

BIRD14.3 Adding four new sub-parameters to [Model]

BIRD15 Clarification on the usage of the V/I tables.

Version 2.1. Version 2.0 contains clarification text changes, corrections, and two additional

waveform parameters beyond Version 2.0 documented in 9 BIRDs:

BIRD18.2 [Diff Pin] Parameter Order

BIRD19.1 V_fixture Subparameter Min/Max Additions

BIRD20.1 Error correction regarding monotonicity statement in V2.1 IBIS Specification

BIRD21 Waveform Table Minimum Number of Entries

BIRD23 Waveform Table Minimum Number of Numerical Entries

BIRD24.1 C_comp, ramp rates and waveform tables

BIRD25.3 Data Derivation Expansion

BIRD26 General syntax rules and guidelines on TAB character usage

BIRD29.2 Banded_matrix Extension

Version 3.0. Version 3.0 adds a number of new keywords and functionality. Some changes are

documented in 10 BIRDS:

BIRD28.3 Enhancement To The Package Model (.pak file) Specification

BIRD30.2 Programmable buffers in IBIS models

BIRD34.2 Stored Charge Effects

BIRD35.3 Multi-staged Outputs

BIRD36.3 Electric Descriptions of Boards

BIRD37.3 Enhancement To The Package Model (.pkg file) Specification

BIRD39 Specification Enhancement

BIRD40 Overshoot Nomenclature

BIRD41.8 Modelling Series Switchable Devices

BIRD43 Component Test Point Subparameters

Version 3.1. Version 3.1 contains a major reformatting of the document and a simplification of the

wording. It also contains some new technical enhancements that were unresolved when Version

3.0 was approved. Some changes are documented in 2 BIRDS:

BIRD47 Remove pin name as a sub-param of the [Pin List] keyword

BIRD52 [Driver Schedule] Clarifications

Version 3.2. Version 3.2 adds more technical advances and also a number of editorial changes in

responses to public letter ballot comments and documented in 13 BIRDs:

BIRD46.1 Relaxation of some IBIS model file name restrictions

BIRD48.4 Add Submodel

BIRD49.4 Add Submodel Dynamic Clamps

BIRD50.3 Add Submodel Bus Hold

BIRD51 3-state_ECL

IBIS Version 6.0

6

BIRD53.1 IBIS File Character Set

BIRD54 Package Model Corrections

BIRD55 [Model Spec] Vmeas Addition

BIRD56.1 Relaxation of [Series Pin Mapping] Restriction

BIRD57.1 Timed Bus Hold Extension

BIRD58.3 Driver Schedule Keyword Clarification

BIRD59.2 Model Spec Diagrams

BIRD60 Electrical Board Description Diagrams

Version 4.0. Version 4.0 adds more technical advances and a few editorial changes documented in

11 BIRDs:

BIRD62.6 Enhanced Specification of Receiver Thresholds

BIRD64.4 Alternate Package Models

BIRD65.2 C_comp Refinements

BIRD66 [Model Spec] Vref Addition

BIRD67.1 Increase V-T Table 100 Point Limit

BIRD68.1 Clarify that Rising and Falling Waveforms Should be Correlated

BIRD70.5 Golden Waveforms

BIRD71 Timing Test Loads in [Model Spec] to Support PCI & PCI-X

BIRD72.3 Accommodating PMOS and NMOS//PMOS Series FET Models

BIRD73.4 Fall Back Submodel

BIRD76.1 Additional Information Related to C_comp Refinements

Version 4.1. Version 4.1 adds more technical advances and a few editorial changes documented in

10 BIRDs:

BIRD75.8 Multi-Lingual Model Support

BIRD77.2 Differential Subparameter Additions

BIRD78.1 Comment Line Length Limit

BIRD80.1 Add External Reference Column to Pin Mapping Keyword

BIRD81.1 Clarify Usage Rule for [Pin] I/O Model Assignment

BIRD82.2 Clarification of Clamp Table Use

BIRD83.2 Series Element Clarifications

BIRD84.1 Driver Schedule Clarifications

BIRD85.3 Slew Time Estimate Clarifications

BIRD86.1 Clarification of Submodel Mode

Version 4.2. Version 4.2 adds more technical advances and some editorial changes documented in

13 BIRDs:

BIRD87 Series Pin Mapping Clarifications

BIRD88.3 Driver Schedule Initialization

BIRD89.1 Keyword Hierarchy Tree

BIRD90.2 Multiple A_to_D Subparameters Clarification

BIRD91.3 Multi-lingual Logic States Clarification

BIRD92.1 Multiple Terminator and Series Elements under [Model]

BIRD93.1 Model and Signal Name Limit Extension

IBIS Version 6.0

7

BIRD94.2 Clarifications on [Diff Pin] Parameters

BIRD96 [Model Spec] and [Receiver Thresholds] Ordering

BIRD99.1 AMS Language Versions

BIRD100.2 Allow Pure Analog *-AMS Models

BIRD101 Section 6b, Figure 12 Example Note

BIRD102 File Name Limit Extension

Version 5.0. Version 5.0 adds more technical advances and some editorial changes documented in

10 BIRDs:

BIRD74.6 EMI Parameters

BIRD95.6 Power Integrity Using IBIS

BIRD98.3 Gate Modulation Effect (Table Format)

BIRD103.1 [Model Spec] DDR2 Overshoot/Undershoot Parameters

BIRD104.1 Algorithmic Modeling API (AMI) Support in IBIS

BIRD106 Clarification on Signal_pin Parameters

BIRD107.2 Update to Algorithmic Modeling API (AMI) Support in IBIS

BIRD108.1 Fixing Algorithmic Modeling API Impulse_matrix Nomenclature

BIRD109.1 S_overshoot_high/S_overshoot_low Clarification

BIRD110 Algorithmic Modeling Interface Section Title

Version 5.1. Version 5.1 uses a new document format and adds more technical advances and some

editorial changes documented in 25 BIRDs:

BIRD111.3 Extended Usage of External Series Components in EBDs

BIRD112 IBIS-AMI clock_times Clarification

BIRD113.3 Weak Pull-up and Weak Pull-down Resistance and Voltage

BIRD114.3 IBIS-AMI Definition Clarifications

BIRD115 Clarifying Min/Typ/Max in IBIS-AMI

BIRD120.1 IBIS-AMI Flow Correction

BIRD126 IBIS-AMI New Reserved Parameter AMI_Version

BIRD127.4 IBIS-AMI Typographical Corrections

BIRD130 Crosstalk Clarification With Respect to AMI

BIRD132 Clarification of the Table Format for IBIS_AMI

BIRD133.1 Model Corner C_comp

BIRD134 AMI Function Return Value Clarification

BIRD135.1 Add Boolean to BNF for IBIS-AMI

BIRD136 Defining Relationships between Type and Format

BIRD137.2 AMI_parameters_in, AMI_parameters_out, msg Clarifications

BIRD138 IBIS-AMI Section 6c Tables Update

BIRD139.2 Reserved_Parameters Order

BIRD140.2 Format Corner and Range Clarification for IBIS-AMI

BIRD141 [Composite Current] Clarifications

BIRD142 Clarification of [Test Data] and [Test Load] scoping

BIRD143.1 Correcting the rules for AMI_Close

BIRD146 Clarify sample_interval for IBIS-AMI

BIRD148 Allowable Model_types with IBIS-AMI

IBIS Version 6.0

8

BIRD149.1 Usage Out Syntax Correction

BIRD151 IBIS-AMI Modified Reserved Parameters for Jitter/Noise

Version 6.0. Version 6.0 adds more technical advances and some editorial changes documented in

7 BIRDs:

BIRD121.2 IBIS-AMI New Reserved Parameters for Data Management

BIRD123.5 IBIS-AMI New Reserved Parameters for Jitter/Noise

BIRD152 Analog Model Boundary Definition

BIRD154.1 Using IBIS-AMI Leaf List_Tip in List Parameters

BIRD156.3 IBIS-AMI Extension for Mid-channel Redrivers and Retimers

BIRD160.1 Analog Buffer Modeling Improvements

BIRD162.1 Change to Usage “Info, Out” for AMI Jitter and Noise Parameters

IBIS Version 6.0

9

3 GENERAL SYNTAX RULES AND GUIDELINES

This section contains general syntax rules and guidelines for ASCII .ibs files:

1. The content of the files is case sensitive, except for reserved words and keywords.

2. The following words are reserved words and must not be used for any other purposes in the

document:

POWER - reserved model name, used with power supply pins

GND - reserved model name, used with ground pins

NC - reserved model name, used with no-connect pins

NA - used where data not available,

CIRCUITCALL - used for circuit call references in Section 6.3

3. To facilitate portability between operating systems, file names used in a .ibs file must only have

lower case characters. File names should have a basename of no more than forty (40)

characters followed by a period (“.”), followed by a file name extension of no more than three

characters. The file name and extension must use characters from the set (space, “ ”, 0x20 is

not included):

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 _ ^ $ ~ ! # % & - { }) (@ ‘ `

The file name and extension are recommended to be lower case on systems that support such

names.

4. A line of the file may have at most 120 characters, followed by a line termination sequence.

The line termination sequence must be one of the following two sequences: a linefeed character

or a carriage return followed by linefeed character.

5. Anything following the comment character is ignored and considered a comment on that line.

The default “|” (pipe) character can be changed by the keyword [Comment Char] to any other

character. The [Comment Char] keyword can be used anywhere in the file as desired.

6. Keywords must be enclosed in square brackets, “[]”, and must start in column 1 of the line. No

space or tab is allowed immediately after the opening bracket “[” or immediately before the

closing bracket “]”. If used, only one space (“ ”) or underscore (“_”) character separates the

parts of a multi-word keyword.

7. Underscores and spaces are equivalent in keywords. Spaces are not allowed in subparameter

names.

8. Valid scaling factors are:

T = tera k = kilo n = nano

G = giga m = milli p = pico

M = mega u = micro f = femto

When no scaling factors are specified, the appropriate base units are assumed. (These are volts,

amperes, ohms, farads, henries, and seconds.) The parser looks at only one alphabetic character

after a numerical entry, therefore it is enough to use only the prefixes to scale the parameters.

However, for clarity, it is allowed to use full abbreviations for the units, (e.g., pF, nH, mA,

mOhm). In addition, scientific notation IS allowed (e.g., 1.2345e-12).

IBIS Version 6.0

10

9. The I-V data tables should use enough data points around sharply curved areas of the I-V

curves to describe the curvature accurately. In linear regions there is no need to define

unnecessary data points.

10. The use of tab characters is legal, but they should be avoided as much as possible. This is to

eliminate possible complications that might arise in situations when tab characters are

automatically converted to multiple spaces by text editing, file transferring and similar software.

In cases like that, lines might become longer than 120 characters, which is illegal in .ibs files.

11. Currents are considered positive when their direction is into the component.

12. All temperatures are represented in degrees Celsius.

13. Important supplemental information is contained in Section 9, “NOTES ON DATA

DERIVATION METHOD”, concerning how data values are derived.

14. Only ASCII characters, as defined in ANSI Standard X3.4-1986, may be used in a .ibs file.

The use of characters with codes greater than hexadecimal 07E is not allowed. Also, ASCII

control characters (those numerically less than hexadecimal 20) are not allowed, except for tabs

or in a line termination sequence. As mentioned in item 10 above, the use of tab characters is

discouraged.

IBIS Version 6.0

11

3.1 KEYWORD HIERARCHY

.ibs FILE

 ├── File Header Section

 │ ├── [IBIS Ver]

 │ ├── [Comment Char]

 │ ├── [File Name]

 │ ├── [File Rev]

 │ ├── [Date]

 │ ├── [Source]

 │ ├── [Notes]

 │ ├── [Disclaimer]

 │ └── [Copyright]

 │

 ├── [Component] Si_location, Timing_location

 │ ├── [Manufacturer]

 │ ├── [Package] R_pkg, L_pkg, C_pkg

 │ ├── [Pin] signal_name, model_name, R_pin,

 │ │ L_pin, C_pin

 │ ├── [Package Model]

 │ │ └── [Alternate Package Models]

 │ │ └── [End Alternate Package Models]

 │ │

 │ ├── [Pin Mapping] pulldown_ref, pullup_ref,

 │ │ gnd_clamp_ref, power_clamp_ref,

 │ │ ext_ref

 │ ├── [Diff Pin] inv_pin, vdiff, tdelay_typ,

 │ │ tdelay_min, tdelay_max

 │ ├── [Repeater Pin] tx_non_inv_pin

 │ ├── [Series Pin Mapping] pin_2, model_name,

 │ │ function_table_group

 │ ├── [Series Switch Groups] On, Off

 │ │

 │ ├── [Node Declarations]

 │ │ └── [End Node Declarations]

 │ │

 │ ├── [Circuit Call] Signal_pin, Diff_signal_pins,

 │ │ │ Series_pins, Port_map

 │ │ └── [End Circuit Call]

 │ │

 │ └── [Begin EMI Component] Domain, Cpd, C_Heatsink_gnd,

 │ │ C_Heatsink_float

 │ ├── [Pin EMI] domain_name, clock_div

 │ ├── [Pin Domain EMI] percentage

 │ └── [End EMI Component]

 │

IBIS Version 6.0

12

 ├── [Model Selector]

 │

 ├── [Model] Model_type, Polarity, Enable,

 │ │ Vinl, Vinh, C_comp, C_comp_pullup,

 │ │ C_comp_pulldown,

 │ │ C_comp_power_clamp,

 │ │ C_comp_gnd_clamp

 │ │ Vmeas, Cref, Rref, Vref

 │ │ Rref_diff, Cref_diff

 │ │

 │ ├── [Model Spec] Vinh, Vinl, Vinh+, Vinh-, Vinl+,

 │ │ Vinl-, S_overshoot_high,

 │ │ S_overshoot_low, D_overshoot_high,

 │ │ D_overshoot_low, D_overshoot_time,

 │ │ D_overshoot_area_h,

 │ │ D_overshoot_area_l,

 │ │ D_overshoot_ampl_h,

 │ │ D_overshoot_ampl_l,

 │ │ Pulse_high, Pulse_low, Pulse_time,

 │ │ Vmeas, Cref, Rref, Vref, Cref_rising,

 │ │ Cref_falling, Rref_rising,

 │ │ Rref_falling, Vref_rising,

 │ │ Vref_falling, Vmeas_rising,

 │ │ Vmeas_falling,

 │ │ Rref_diff, Cref_diff,

 │ │ Weak_R, Weak_I, Weak_V

 │ ├── [Receiver Thresholds] Vth, Vth_min, Vth_max, Vinh_ac,

 │ │ Vinh_dc, Vinl_ac, Vinl_dc,

 │ │ Threshold_sensitivity,

 │ │ Reference_supply, Vcross_low,

 │ │ Vcross_high, Vdiff_ac, Vdiff_dc,

 │ │ Tslew_ac, Tdiffslew_ac

 │ ├── [Add Submodel]

 │ ├── [Driver Schedule]

 │ ├── [Temperature Range]

 │ ├── [Voltage Range]

 │ ├── [Pullup Reference]

 │ ├── [Pulldown Reference]

 │ ├── [POWER Clamp Reference]

 │ ├── [GND Clamp Reference]

 │ ├── [External Reference]

 │ ├── [C Comp Corner] C_comp, C_comp_pullup,

 │ │ C_comp_pulldown,

 │ │ C_comp_power_clamp,

 │ │ C_comp_gnd_clamp

 │ ├── [TTgnd]

IBIS Version 6.0

13

 │ ├── [TTpower]

 │ ├── [Pulldown]

 │ ├── [Pullup]

 │ ├── [GND Clamp]

 │ ├── [POWER Clamp]

 │ ├── [ISSO PU]

 │ ├── [ISSO PD]

 │ ├── [Rgnd]

 │ ├── [Rpower]

 │ ├── [Rac]

 │ ├── [Cac]

 │ ├── [On]

 │ ├── [Off]

 │ ├── [R Series]

 │ ├── [L Series]

 │ ├── [Rl Series]

 │ ├── [C Series]

 │ ├── [Lc Series]

 │ ├── [Rc Series]

 │ ├── [Series Current]

 │ ├── [Series MOSFET] Vds

 │ ├── [Ramp] dV/dt_r, dV/dt_f,

 │ │ R_load

 │ ├── [Rising Waveform] R_fixture, V_fixture,

 │ │ │ V_fixture_min, V_fixture_max,

 │ │ │ C_fixture, L_fixture, R_dut,

 │ │ │ L_dut, C_dut

 │ │ └── [Composite Current]

 │ │

 │ ├── [Falling Waveform] R_fixture, V_fixture,

 │ │ │ V_fixture_min, V_fixture_max,

 │ │ │ C_fixture, L_fixture, R_dut,

 │ │ │ L_dut, C_dut

 │ │ └── [Composite Current]

 │ │

 │ ├── [External Model] Language, Corner, Parameters,

 │ │ │ Converter_Parameters, Ports, D_to_A,

 │ │ │ A_to_D

 │ │ └── [End External Model]

 │ │

 │ ├── [Algorithmic Model] Executable

 │ │ └── [End Algorithmic Model]

 │ │

 │ └── [Begin EMI Model] Model_emi_type, Model_Domain

 │ └── [End EMI Model]

 │

IBIS Version 6.0

14

 ├── [Submodel] Submodel_type

 │ ├── [Submodel Spec] V_trigger_r, V_trigger_f,

 │ │ Off_delay

 │ ├── [POWER Pulse Table]

 │ ├── [GND Pulse Table]

 │ ├── [Pulldown]

 │ ├── [Pullup]

 │ ├── [GND Clamp]

 │ ├── [POWER Clamp]

 │ ├── [Ramp] dV/dt_r, dV/dt_f, R_load

 │ ├── [Rising Waveform] R_fixture, V_fixture,

 │ │ V_fixture_min, V_fixture_max,

 │ │ C_fixture, L_fixture, R_dut, L_dut,

 │ │ C_dut

 │ └── [Falling Waveform] R_fixture, V_fixture,

 │ V_fixture_min, V_fixture_max,

 │ C_fixture, L_fixture, R_dut, L_dut,

 │ C_dut

 │

 ├── [External Circuit] Language, Corner, Parameters,

 │ │ Converter_Parameters, Ports, D_to_A,

 │ │ A_to_D

 │ └── [End External Circuit]

 │

 ├── [Test Data] Test_data_type, Driver_model,

 │ │ Driver_model_inv, Test_load

 │ ├── [Rising Waveform Near]

 │ ├── [Falling Waveform Near]

 │ ├── [Rising Waveform Far]

 │ ├── [Falling Waveform Far]

 │ ├── [Diff Rising Waveform Near]

 │ ├── [Diff Falling Waveform Near]

 │ ├── [Diff Rising Waveform Far]

 │ └── [Diff Falling Waveform Far]

 │

 ├── [Test Load] Test_load_type, C1_near, Rs_near,

 │ Ls_near, C2_near, Rp1_near,

 │ Rp2_near, Td, Zo, Rp1_far,

 │ Rp2_far, C2_far, Ls_far, Rs_far,

 │ C1_far, V_term1, V_term2,

 │ Receiver_model,

 │ Receiver_model_inv, R_diff_near,

 │ R_diff_far

 │

IBIS Version 6.0

15

 ├── [Define Package Model]

 │ ├── [Manufacturer]

 │ ├── [OEM]

 │ ├── [Description]

 │ ├── [Number Of Sections]

 │ ├── [Number Of Pins]

 │ ├── [Pin Numbers] Len, L, R, C, Fork, Endfork

 │ ├── [Model Data]

 │ │ ├── [Resistance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ ├── [Inductance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ ├── [Capacitance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ └── [End Model Data]

 │ │

 │ └── [End Package Model]

 │

 └── [End]

.pkg FILE

 ├── File Header Section

 │ ├── [IBIS Ver]

 │ ├── [Comment Char]

 │ ├── [File Name]

 │ ├── [File Rev]

 │ ├── [Date]

 │ ├── [Source]

 │ ├── [Notes]

 │ ├── [Disclaimer]

 │ └── [Copyright]

 │

 ├── [Define Package Model]

 │ ├── [Manufacturer]

 │ ├── [OEM]

 │ ├── [Description]

IBIS Version 6.0

16

 │ ├── [Number Of Sections]

 │ ├── [Number Of Pins]

 │ ├── [Pin Numbers] Len, L, R, C, Fork, Endfork

 │ ├── [Model Data]

 │ │ ├── [Resistance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ ├── [Inductance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ ├── [Capacitance Matrix] Banded_matrix, Sparse_matrix,

 │ │ │ │ Full_matrix

 │ │ │ ├── [Bandwidth]

 │ │ │ └── [Row]

 │ │ │

 │ │ └── [End Model Data]

 │ │

 │ └── [End Package Model]

 │

 └── [End]

.ebd FILE

 ├── File Header Section

 │ ├── [IBIS Ver]

 │ ├── [Comment Char]

 │ ├── [File Name]

 │ ├── [File Rev]

 │ ├── [Date]

 │ ├── [Source]

 │ ├── [Notes]

 │ ├── [Disclaimer]

 │ └── [Copyright]

 │

 ├── [Begin Board Description]

 │ ├── [Manufacturer]

 │ ├── [Number of Pins]

 │ ├── [Pin List] signal_name

 │ ├── [Path Description] Len, L, R, C, Fork, Endfork, Pin,

 │ │ Node

 │ ├── [Reference Designator Map]

 │ └── [End Board Description]

IBIS Version 6.0

17

 │

 └── [End]

IBIS Version 6.0

18

4 FILE HEADER INFORMATION

Keyword: [IBIS Ver]

Required: Yes

Description: Specifies the IBIS template version. This keyword informs electronic parsers of the

kinds of data types that are present in the file.

Usage Rules: [IBIS Ver] must be the first keyword in any .ibs file. It is normally on the first line

of the file, but can be preceded by comment lines that must begin with a “|”.

Example:

[IBIS Ver] 6.0 | Used for template variations

Keyword: [Comment Char]

Required: No

Description: Defines a new comment character to replace the default “|” (pipe) character, if

desired.

Usage Rules: The new comment character to be defined must be followed by the underscore

character and the letters “char”. For example: “|_char” redundantly redefines the comment

character to be the pipe character. The new comment character is in effect only following the

[Comment Char] keyword. The following characters MAY be used:

! " # $ % & ' () * , : ; < > ? @ \ ^ ` { | } ~

Other Notes: The [Comment Char] keyword can be used anywhere in the file, as desired.

Example:

[Comment Char] |_char

Keyword: [File Name]

Required: Yes

Description: Specifies the name of the .ibs file.

Usage Rules: The file name must conform to the rules in paragraph 3 of Section 3, "GENERAL

SYNTAX RULES AND GUIDELINES". In addition, the file name must use the extension “.ibs”,

“.pkg”, or “.ebd”. The file name must be the actual name of the file.

Example:

[File Name] ver5_1.ibs

IBIS Version 6.0

19

Keyword: [File Rev]

Required: Yes

Description: Tracks the revision level of a particular .ibs file.

Usage Rules: Revision level is set at the discretion of the engineer defining the file. The

following guidelines are recommended:

0.x silicon and file in development

1.x pre-silicon file data from silicon model only

2.x file correlated to actual silicon measurements

3.x mature product, no more changes likely

Example:

[File Rev] 1.0 | Used for .ibs file variations

Keywords: [Date], [Source], [Notes], [Disclaimer], [Copyright]

Required: No

Description: Optionally clarifies the file.

Usage Rules: The keyword arguments can contain blanks, and be of any format. The [Date]

keyword argument is limited to a maximum of 40 characters, and the month should be spelled out

for clarity.

Because IBIS model writers may consider the information in these keywords essential to users, and

sometimes legally required, design automation tools should make this information available.

Derivative models should include this text verbatim. Any text following the [Copyright] keyword

must be included, verbatim, in any derivative models.

Examples:

[Date] September 20, 2013 | The latest file revision date

|

[Source] Put originator and the source of information here. For

 example:

 From silicon level SPICE model at NoName.

 From lab measurement.

 Compiled from manufacturer's data book, etc.

|

[Notes] Use this section for any special notes related to the file.

|

[Disclaimer] This information is for modeling purposes only, and is not

 guaranteed. | May vary by component

|

[Copyright] Copyright 2013, XYZ Corp., All Rights Reserved

IBIS Version 6.0

20

5 COMPONENT DESCRIPTION

Keyword: [Component]

Required: Yes

Description: Marks the beginning of the IBIS description of the integrated circuit named after the

keyword.

Sub-Params: Si_location, Timing_location

Usage Rules: If the .ibs file contains data for more than one component, each section must begin

with a new [Component] keyword. The length of the component name must not exceed 40

characters, and blank characters are allowed.

NOTE: Blank characters are not recommended due to usability issues.

Si_location and Timing_location are optional and specify where the Signal Integrity and Timing

measurements are made for the component. Allowed values for either subparameter are “Die” or

“Pin”. The default location is at the “Pin”.

Example:

[Component] 7403398 MC452

|

Si_location Pin | Optional subparameters to give measurement

Timing_location Die | location positions

Keyword: [Manufacturer]

Required: Yes

Description: Specifies the name of the component’s manufacturer.

Usage Rules: The length of the manufacturer’s name must not exceed 40 characters (blank

characters are allowed, e.g., Texas Instruments). In addition, each manufacturer must use a

consistent name in all .ibs files.

Example:

[Manufacturer] NoName Corp.

Keyword: [Package]

Required: Yes

Description: Defines a range of values for the default packaging resistance, inductance, and

capacitance of the component pins.

Sub-Params: R_pkg, L_pkg, C_pkg

Usage Rules: The typical (typ) column must be specified. If data for the other columns are not

available, they must be noted with “NA”.

Other Notes: If RLC parameters are available for individual pins, they can be listed in columns

4-6 under keyword [Pin]. The values listed in the [Pin] description section override the default

values defined here. Use the [Package Model] keyword for more complex package descriptions.

IBIS Version 6.0

21

If defined, the [Package Model] data overrides the values in the [Package] keyword. Regardless,

the data listed under the [Package] keyword must still contain valid data.

Example:

[Package]

| variable typ min max

R_pkg 250.0m 225.0m 275.0m

L_pkg 15.0nH 12.0nH 18.0nH

C_pkg 18.0pF 15.0pF 20.0pF

Keyword: [Pin]

Required: Yes

Description: Associates the component’s I/O models to its various external pin names and signal

names.

Sub-Params: signal_name, model_name, R_pin, L_pin, C_pin

Usage Rules: All pins on a component must be specified. The first column must contain the pin

name. The second column, signal_name, gives the data book name for the signal on that pin. The

third column, model_name, maps a pin to a specific I/O buffer model or model selector name.

Each model_name must have a corresponding model or model selector name listed in a [Model] or

[Model Selector] keyword below, unless it is a reserved model name (POWER, GND, or NC).

The model_name column cannot be used for model or model selector names that reference Series

and Series_switch models.

Each line must contain either three or six columns. A pin line with three columns only associates

the pin’s signal and model. Six columns can be used to override the default package values

(specified under [Package]) FOR THAT PIN ONLY. When using six columns, the headers R_pin,

L_pin, and C_pin must be listed. If “NA” is in columns 4 through 6, the default packaging values

must be used. The headers R_pin, L_pin, and C_pin may be listed in any order.

Column length limits are:

[Pin] 5 characters max

model_name 40 characters max

signal_name 40 characters max

R_pin 9 characters max

L_pin 9 characters max

C_pin 9 characters max

Example:

[Pin] signal_name model_name R_pin L_pin C_pin

|

 1 RAS0# Buffer1 200.0m 5.0nH 2.0pF

 2 RAS1# Buffer2 209.0m NA 2.5pF

 3 EN1# Input1 NA 6.3nH NA

 4 A0 3-state

 5 D0 I/O1

 6 RD# Input2 310.0m 3.0nH 2.0pF

 7 WR# Input2

 8 A1 I/O2

IBIS Version 6.0

22

 9 D1 I/O2

 10 GND GND 297.0m 6.7nH 3.4pF

 11 RDY# Input2

 12 GND GND 270.0m 5.3nH 4.0pF

| .

| .

| .

 18 Vcc3 POWER

 19 NC NC

 20 Vcc5 POWER 226.0m NA 1.0pF

 21 BAD1 Series_switch1 | Illegal assignment

 22 BAD2 Series_selector1 | Illegal assignment

Keyword: [Package Model]

Required: No

Description: Indicates the name of the package model to be used for the component.

Usage Rules: The package model name is limited to 40 characters. Spaces are allowed in the

name. The name should include the company name or initials to help ensure uniqueness. The

EDA tool will search for a matching package model name as an argument to a [Define Package

Model] keyword in the current .ibs file first. If a match is not found, the EDA tool will next look

for a match in an external .pkg file. If the matching package model is in an external .pkg file, it

must be located in the same directory as the .ibs file. The file names of .pkg files must follow the

rules for file names given in Section 3, "GENERAL SYNTAX RULES AND GUIDELINES".

Other Notes: Use the [Package Model] keyword within a [Component] to indicate which package

model should be used for that component. The specification permits .ibs files to contain [Define

Package Model] keywords as well. These are described under “Package Modeling” in Section 7.

When package model definitions occur within a .ibs file, their scope is “local”, i.e., they are known

only within that .ibs file and no other. In addition, within that .ibs file, they override any globally

defined package models that have the same name.

Example:

[Package Model] QS-SMT-cer-8-pin-pkgs

Keywords: [Alternate Package Models], [End Alternate Package Models]

Required: No

Description: Used to select a package model from a list of package models.

Usage Rules: The [Alternate Package Models] keyword can be used in addition to the [Package

Model] keyword. [Alternate Package Models] shall be used only for components that use the

[Package Model] keyword.

Each [Alternate Package Models] keyword specifies a set of alternate package model names for

only one component, which is given by the previous [Component] keyword. The [Alternate

Package Models] keyword shall not appear before the first [Component] keyword in a .ibs file.

The [Alternate Package Models] keyword applies only to the [Component] section in which it

appears, and must be followed by an [End Alternate Package Models] keyword.

IBIS Version 6.0

23

All alternate package model names must appear below the [Alternate Package Models] keyword,

and above the following [End Alternate Package Models] keyword. The package model names

listed under the [Alternate Package Models] must follow the rules of the package model names

associated with the [Package Model] keyword. The package model names correspond to the names

of package models defined by [Define Package Model] keywords. EDA tools may offer users a

facility for choosing between the default package model and any of the alternate package models,

when analyzing occurrences of the [Component].

The package model named by [Package Model] can be optionally repeated in the [Alternate

Package Models] list of names.

Example:

[Alternate Package Models]

|

208-pin_plastic_PQFP_package-even_mode | Descriptive names are shown

208-pin_plastic_PQFP_package-odd_mode

208-pin_ceramic_PQFP_package-even_mode

208-pin_ceramic_PQFP_package-odd_mode

|

[End Alternate Package Models]

Keyword: [Pin Mapping]

Required: No

Description: Used to indicate the power and/or ground buses to which a given driver, receiver or

terminator is connected.

Sub-Params: pulldown_ref, pullup_ref, gnd_clamp_ref, power_clamp_ref, ext_ref

Usage Rules: The [Pin Mapping] keyword names the connections between POWER and/or GND

pins and buffer and/or terminator voltage supply references using unique bus labels. All buses with

identical labels are assumed to be connected with an ideal short. Each label must be associated

with at least one pin whose model_name is POWER or GND. Bus labels must not exceed 15

characters.

Each line must contain either three, five or six entries. Use the reserved word NC where an entry is

required but a bus connection is not made.

The first column contains a pin name. Each pin name must match one of the pin names declared in

the [Pin] section of the [Component].

For buffers and terminators, the remaining columns correspond to the voltage supply references for

the named pin. Each [Model] supply reference is connected to a particular bus through a bus label

in the corresponding column.

The second column, pulldown_ref, designates the ground bus connections for the buffer or

termination associated with that pin. The bus named under pulldown_ref is associated with the

[Pulldown] I-V table for non-ECL [Model]s. This is also the bus associated with the [GND Clamp]

I-V table and the [Rgnd] model unless overridden by a label in the gnd_clamp_ref column.

The third column, pullup_ref, designates the power bus connection for the buffer or termination.

The bus named under pullup_ref is associated with the [Pullup] table for non-ECL [Model]s (for

ECL models, this bus is associated with the [Pulldown] table). This is also the bus label associated

IBIS Version 6.0

24

with the [POWER Clamp] I-V table and the [Rpower] model unless overridden by a label in the

power_clamp_ref column.

The fourth and fifth columns, gnd_clamp_ref and power_clamp_ref, contain entries, if needed, to

specify additional ground bus and power bus connections for clamps. Finally, the sixth column,

ext_ref, contains entries to specify external reference supply bus connections.

The usage of the columns changes for GND and POWER pins. For GND pins, the pulldown_ref

column contains the name of the bus to which the pin connects; the pullup_ref column in this case

must contain the reserved word NC. Similarly, for POWER (including external reference) pins, the

pullup_ref column contains the name of the bus to which the pin connects; the pulldown_ref

column in this case must contain the reserved word NC.

If the [Pin Mapping] keyword is present, then the bus connections for EVERY pin listed under the

[Pin] keyword must be given.

If a pin has no connection, then both the pulldown_ref and pullup_ref subparameters for it will be

NC.

The column length limits are:

[Pin Mapping] 5 characters max

pulldown_ref 15 characters max

pullup_ref 15 characters max

gnd_clamp_ref 15 characters max

power_clamp_ref 15 characters max

ext_ref 15 characters max

For compatibility with models developed under previous IBIS versions, [Pin Mapping] lines which

contain ext_ref column entries must also explicitly include entries for the pulldown_ref, pullup_ref,

gnd_clamp_ref and power_clamp_ref columns. These entries can be NC.

When six columns of data are specified, the headings gnd_clamp_ref, power_clamp_ref and

ext_ref must be used on the line containing the [Pin Mapping] keyword. Otherwise, these headings

can be omitted.

Example:

[Pin Mapping] pulldown_ref pullup_ref gnd_clamp_ref power_clamp_ref ext_ref

|

1 GNDBUS1 PWRBUS1 | Signal pins and their associated

2 GNDBUS2 PWRBUS2 | ground, power and external

| | reference connections

3 GNDBUS1 PWRBUS1 GNDCLMP PWRCLAMP

4 GNDBUS2 PWRBUS2 GNDCLMP PWRCLAMP

5 GNDBUS2 PWRBUS2 NC PWRCLAMP REFBUS1

6 GNDBUS2 PWRBUS2 GNDCLMP NC

7 GNDBUS2 PWRBUS2 GNDCLMP NC REFBUS2

| | Some possible clamping

| | connections are shown above

| . | for illustration purposes

| .

11 GNDBUS1 NC | One set of ground connections.

12 GNDBUS1 NC | NC indicates no connection to

13 GNDBUS1 NC | power bus.

| .

21 GNDBUS2 NC | Second set of ground connections

IBIS Version 6.0

25

22 GNDBUS2 NC

23 GNDBUS2 NC

| .

31 NC PWRBUS1 | One set of power connections.

32 NC PWRBUS1 | NC indicates no connection to

33 NC PWRBUS1 | ground bus.

| .

41 NC PWRBUS2 | Second set of power connections

42 NC PWRBUS2

43 NC PWRBUS2

| .

51 GNDCLMP NC | Additional power connections

52 NC PWRCLMP | for clamps

|

| .

71 NC REFBUS1 | External reference connections

72 NC REFBUS2

|

| The following [Pin] list corresponds to the [Pin Mapping] shown above.

|

[Pin] signal_name model_name R_pin L_pin C_pin

|

1 OUT1 output_buffer1 | Output buffers

2 OUT2 output_buffer2 |

3 IO3 io_buffer1 | Input/output buffers

4 IO4 io_buffer2 |

5 SPECIAL1 ref_buffer1 | Buffers with POWER CLAMP but no

6 SPECIAL2 io_buffer_term1 | GND CLAMP I-V tables; two use

7 SPECIAL3 ref_buffer2 | external reference voltages

11 VSS1 GND

12 VSS1 GND

13 VSS1 GND

21 VSS2 GND

22 VSS2 GND

23 VSS2 GND

31 VCC1 POWER

32 VCC1 POWER

33 VCC1 POWER

41 VCC2 POWER

42 VCC2 POWER

43 VCC2 POWER

51 VSSCLAMP GND | Power connections for clamps

52 VCCCLAMP POWER |

71 V_EXTREF1 POWER | External reference voltage pins

72 V_EXTREF2 POWER |

Keyword: [Diff Pin]

Required: No

Description: Associates differential pins and defines their differential receiver threshold voltage

and differential driver timing delays.

Sub-Params: inv_pin, vdiff, tdelay_typ, tdelay_min, tdelay_max

IBIS Version 6.0

26

Usage Rules: Enter only differential pin pairs. The first column, [Diff Pin], contains a non-

inverting pin name. The second column, inv_pin, contains the corresponding inverting pin name

for I/O output. Each pin name must match the pin names declared previously in the [Pin] section

of the .ibs file. The third column, vdiff, contains the specified differential receiver threshold

voltage between the inverting and non-inverting pins for Input or I/O model types. The fourth, fifth,

and sixth columns, tdelay_typ, tdelay_min, and tdelay_max, contain launch delays of the non-

inverting pins relative to the inverting pins. All of the numerical entries may be a positive, zero, or

negative number.

For differential Input or I/O model types, the differential input threshold (vdiff) overrides and

supersedes the need for Vinh and Vinl.

Other Notes: The output pin polarity specification in the table overrides the [Model] Polarity

specification such that the pin in the [Diff Pin] column is Non-Inverting and the pin in the inv_pin

column is Inverting. This convention enables one [Model] to be used for both pins.

The column length limits are:

[Diff Pin] 5 characters max

inv_pin 5 characters max

vdiff 9 characters max

tdelay_typ 9 characters max

tdelay_min 9 characters max

tdelay_max 9 characters max

Each line must contain either four or six columns. Using four columns is an equivalent of entering

“NA”s in the fifth and sixth columns. An “NA” in the vdiff column will be interpreted as a 200

mV default differential receiver threshold. “NA”s in the tdelay_typ, or tdelay_min columns are

interpreted as 0 ns. If “NA” appears in the tdelay_max column, its value is interpreted as the

tdelay_typ value. When using six columns, the headers tdelay_min and tdelay_max must be listed.

Entries for the tdelay_min column are based on minimum magnitudes; and tdelay_max column,

maximum magnitudes. One entry of vdiff, regardless of its polarity, is used for difference

magnitudes.

When a [Model] that is associated with any of the pins listed under the [Diff Pin] keyword contains

the [Algorithmic Model] keyword, the tdelay_*** parameters in the fourth, fifth and sixth columns

of the [Diff Pin] keyword are ignored in algorithmic model interface (AMI) channel

characterization simulations, i.e., they are treated as if their value would be zero.

The positioning of numerical entries and/or “NA” must not be used as an indication for the model

type. The model type is determined by the model type parameter inside the [Model]s referenced by

the [Diff Pin] keyword, regardless of what the [Diff Pin]’s entries are. The simulator may ignore

the vdiff or the tdelay_*** parameters if not needed by the model type of the [Model], or use the

default values defined above if they are needed but not provided in the [Diff Pin] keyword. For

example, an “NA” in the third column (vdiff) does not imply that the model type is Output, or three

“NA”s in the tdelay columns does not mean that the model type is Input.

Note that the starting point of the flight time measurements will occur when the differential driver’s

output waveforms are crossing, i.e., when the differential output voltage is zero, and consequently

Vmeas, if defined, will be ignored.

Example:

[Diff Pin] inv_pin vdiff tdelay_typ tdelay_min tdelay_max

IBIS Version 6.0

27

|

 3 4 150mV -1ns 0ns -2ns

| For Input, tdelay_typ/min/max ignored

| For Output, vdiff ignored

|

 7 8 0V 1ns NA NA

16 15 200mV 1ns

| For Input, tdelay_typ ignored

| For Output, vdiff ignored and tdelay_min = 0ns and tdelay_max = 1ns

| For I/O, tdelay_min = 0ns and tdelay_max = 1ns

|

 9 10 NA NA NA NA

22 21 NA NA

| For Input, vdiff = 200 mV

| For Output, tdelay_typ/min/max = 0ns

| For I/O, vdiff = 200 mV and tdelay_typ/min/max = 0ns

|

20 19 0V NA

| For Output, vdiff ignored and tdelay_typ/min/max = 0ns

| For I/O, tdelay_typ/min/max = 0ns

Keyword: [Series Pin Mapping]

Required: No

Description: Used to associate two pins joined by a series model.

Sub-Params: pin_2, model_name, function_table_group

Usage Rules: Enter only series pin pairs. The first column, [Series Pin Mapping], contains the

series pin for which input impedances are measured. The second column, pin_2, contains the other

connection of the series model. Each pin must match the pin names declared previously in the [Pin]

section of the .ibs file. The third column, model_name, associates models of type Series or

Series_switch, or model selectors containing references to models of type Series or Series_switch

for the pair of pins in the first two columns. Each model_name must have a corresponding model

or model selector name listed in a [Model] or [Model Selector] keyword below. The usage of

reserved model names (POWER, GND, or NC) within the [Series Pin Mapping] keyword is not

allowed. The fourth column, function_table_group, contains an alphanumeric designator string to

associate those sets of Series_switch pins that are switched together.

Each line must contain either three or four columns. When using four columns, the header

function_table_group must be listed.

One possible application is to model crossbar switches where the straight through On paths are

indicated by one designator and the cross over On paths are indicated by another designator. If the

model referenced is a Series model, then the function_table_group entry is omitted.

The column length limits are:

[Series Pin Mapping] 5 characters max

pin_2 5 characters max

model_name 40 characters max

function_table_group 20 characters max

IBIS Version 6.0

28

Other Notes: If the model_name is for a non-symmetrical series model, then the order of the pins

is important. The [Series Pin Mapping] and pin_2 entries must be in the columns that correspond

with Pin 1 and Pin 2 of the referenced model.

This mapping covers only the series paths between pins. The package parasitics and any other

elements such as additional capacitance or clamping circuitry are defined by the model_name that

is referenced in the [Pin] keyword. The model_names under the [Pin] keyword that are also

referenced by the [Series Pin Mapping] keyword may include any legal model or reserved model

except for Series and Series_switch models. Normally the pins will reference a [Model] whose

Model_type is “Terminator”. For example, a Series_switch model may contain Terminator models

on EACH of the pins to describe both the capacitance on each pin and some clamping circuitry that

may exist on each pin. In a similar manner, Input, I/O or Output models may exist on each pin of a

Series model that is serving as a differential termination.

Also, a pin name may appear on more than one entry under the [Series Pin Mapping] keyword.

This allows for multiple and perhaps different models or model selectors to be placed between the

same, or any arbitrary pin pair combinations.

Example:

[Series Pin Mapping] pin_2 model_name function_table_group

|

 2 3 CBTSeries 1 | Four independent groups

 5 6 CBTSeries 2

 9 8 CBTSeries 3

 12 11 CBTSeries 4

|

 22 23 CBTSeries 5 | Straight through path

 25 26 CBTSeries 5

 22 26 CBTSeries 6 | Cross over path

 25 23 CBTSeries 6

|

 32 33 Fixed_series | No group needed

Keyword: [Series Switch Groups]

Required: Yes, if function_table_group column data is present under [Series Pin Mapping]

Description: Used to define allowable switching combinations of series switches described using

the names of the groups in the [Series Pin Mapping] keyword function_table_group column.

Sub-Params: On, Off

Usage Rules: Each state line contains an allowable configuration. A typical state line will start

with “On” followed by all of the on-state group names or an “Off” followed by all of the off-state

group names. Only one of “On” or “Off” is required since the undefined states are presumed to be

opposite of the explicitly defined states. The state line is terminated with the slash “/”, even if it

extends over several lines to fit within the 120 character column width restriction.

The group names in the function_table_group are used to associate switches whose switching

action is synchronized by a common control function. The first line defines the assumed (default)

state of the set of series switches. Other sets of states are listed and can be selected through a user

interface or through automatic control.

IBIS Version 6.0

29

Example:

[Series Switch Groups]

| Function Group States

On 1 2 3 4 / | Default setting is all switched On

|

Off 1 2 3 4 / | All Off setting

On 1 / | Other possible combinations below

On 2 /

On 3 /

On 4 /

On 1 2 /

On 1 3 /

On 1 4 /

On 2 3 /

On 2 4 /

On 3 4 /

On 1 2 3 /

On 1 2 4 /

On 1 3 4 /

On 2 3 4 /

| Off 4 / | The last four lines above could have been replaced

| Off 3 / | with these four lines with the same meaning.

| Off 2 /

| Off 1 /

|

On 5 / | Crossbar switch straight through connection

On 6 / | Crossbar cross over connection

Off 5 6 / | Crossbar open switches

Keyword: [Model Selector]

Required: No

Description: Used to pick a [Model] from a list of [Model]s for a pin which uses a programmable

buffer.

Usage Rules: A programmable buffer must have an individual [Model] section for each one of its

modes used in the .ibs file. The names of these [Model]s must be unique and can be listed under

the [Model Selector] keyword and/or pin list. The name of the [Model Selector] keyword must

match the corresponding model name listed under the [Pin] or [Series Pin Mapping] keyword and

must not contain more than 40 characters. A .ibs file must contain enough [Model Selector]

keywords to cover all of the model selector names specified under the [Pin] and [Series Pin

Mapping] keywords.

The section under the [Model Selector] keyword must have two fields. The two fields must be

separated by at least one white space. The first field lists the [Model] name (up to 40 characters

long). The second field contains a short description of the [Model] shown in the first field. The

contents and format of this description is not standardized, however it shall be limited in length so

that none of the descriptions exceed the 120-character length of the line that it started on. The

purpose of the descriptions is to aid the user of the EDA tool in making intelligent buffer mode

selections and it can be used by the EDA tool in a user interface dialog box as the basis of an

interactive buffer selection mechanism.

IBIS Version 6.0

30

The first entry under the [Model Selector] keyword shall be considered the default by the EDA tool

for all those pins which call this [Model Selector].

The operation of this selection mechanism implies that a group of pins which use the same

programmable buffer (i.e., model selector name) will be switched together from one [Model] to

another. Therefore, if two groups of pins, for example an address bus and a data bus, use the same

programmable buffer, and the user must have the capability to configure them independently, one

can use two [Model Selector] keywords with unique names and the same list of [Model] keywords;

however, the usage of the [Model Selector] is not limited to these examples. Many other

combinations are possible.

Example:

[Pin] signal_name model_name R_pin L_pin C_pin

|

 1 RAS0# Progbuffer1 200.0m 5.0nH 2.0pF

 2 EN1# Input1 NA 6.3nH NA

 3 A0 3-state

 4 D0 Progbuffer2

 5 D1 Progbuffer2 320.0m 3.1nH 2.2pF

 6 D2 Progbuffer2

 7 RD# Input2 310.0m 3.0nH 2.0pF

| .

| .

| .

 18 Vcc3 POWER

|

[Model Selector] Progbuffer1

|

OUT_2 2 mA buffer without slew rate control

OUT_4 4 mA buffer without slew rate control

OUT_6 6 mA buffer without slew rate control

OUT_4S 4 mA buffer with slew rate control

OUT_6S 6 mA buffer with slew rate control

|

[Model Selector] Progbuffer2

|

OUT_2 2 mA buffer without slew rate control

OUT_6 6 mA buffer without slew rate control

OUT_6S 6 mA buffer with slew rate control

OUT_8S 8 mA buffer with slew rate control

OUT_10S 10 mA buffer with slew rate control

IBIS Version 6.0

31

6 BUFFER MODELING

6.1 MODEL STATEMENT

Keyword: [Model]

Required: Yes

Description: Used to define a model, and its attributes.

Sub-Params: Model_type, Polarity, Enable, Vinl, Vinh, C_comp, C_comp_pullup,

C_comp_pulldown, C_comp_power_clamp, C_comp_gnd_clamp, Vmeas, Cref, Rref, Vref

Usage Rules: Each model type must begin with the keyword [Model]. The model name must

match the one that is listed under a [Pin], [Model Selector] or [Series Pin Mapping] keyword and

must not contain more than 40 characters. A .ibs file must contain enough [Model] keywords to

cover all of the model names specified under the [Pin], [Model Selector] and [Series Pin Mapping]

keywords, except for those model names that use reserved words (POWER, GND and NC).

Model_type must be one of the following:

Input, Output, I/O, 3-state, Open_drain, I/O_open_drain, Open_sink, I/O_open_sink,

Open_source, I/O_open_source, Input_ECL, Output_ECL, I/O_ECL, 3-state_ECL, Terminator,

Series, and Series_switch.

For true differential models documented under Section 6.3, Model_type must be one of the

following:

Input_diff, Output_diff, I/O_diff, and 3-state_diff

Special usage rules for particular model types are provided in Table 1. Some definitions are

included for clarification.

Table 1 – Special Rules for Keyword [Model]

Model Type Definition

Input

I/O

I/O_open_drain

I/O_open_sink

I/O_open_source

These model types must have Vinl and Vinh defined. If

they are not defined, the parser issues a warning and the

default values of Vinl = 0.8 V and Vinh = 2.0 V are

assumed.

Input_ECL

I/O_ECL

These model types must have Vinl and Vinh defined. If

they are not defined, the parser issues a warning and the

default values of Vinl = 0.8 V and Vinh = 2.0 V are

assumed.

Terminator

This model type is an input-only model that can have

analog loading effects on the circuit being simulated but

has no digital logic thresholds. Examples of

terminators are: capacitors, termination diodes, and

pullup resistors.

IBIS Version 6.0

32

Model Type Definition

Output
This model type indicates that an output always sources

and/or sinks current and cannot be disabled.

3-state
This model type indicates that an output can be

disabled, i.e., put into a high impedance state.

Open_sink

Open_drain

These model types indicate that the output has an

OPEN side (do not use the [Pullup] keyword, or if it

must be used, set I = 0 mA for all voltages specified)

and the output SINKS current. Open_drain model type

is retained for backward compatibility.

Open_source

This model type indicates that the output has an OPEN

side (do not use the [Pulldown] keyword, or if it must

be used, set I = 0 mA for all voltages specified) and the

output SOURCES current.

Input_ECL

Output_ECL

I/O_ECL

3-state_ECL

These model types specify that the model represents an

ECL type logic that follows different conventions for

the [Pulldown] keyword.

Series

This model type is for series models that can be

described by [R Series], [L Series], [Rl Series],

[C Series], [Lc Series], [Rc Series], [Series Current] and

[Series MOSFET] keywords.

Series_switch

This model type is for series switch models that can be

described by [On], [Off], [R Series], [L Series],

[Rl Series], [C Series], [Lc Series], [Rc Series],

[Series Current] and [Series MOSFET] keywords.

Input_diff

Output_diff

I/O_diff

3-state_diff

These model types specify that the model defines a true

differential model available directly through the

[External Model] keyword documented in Section 6.3.

The Model_type subparameter is required.

The C_comp subparameter is required only when C_comp_pullup, C_comp_pulldown,

C_comp_power_clamp, and C_comp_gnd_clamp are not present. If the C_comp subparameter is

not present, at least one of the C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, or

C_comp_gnd_clamp subparameters is required. It is not illegal to include the C_comp

subparameter together with one or more of the remaining C_comp_* subparameters, but in that

IBIS Version 6.0

33

case the simulator will have to make a decision whether to use C_comp or the C_comp_pullup,

C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp subparameters. Under no

circumstances should the simulator use the value of C_comp simultaneously with the values of the

other C_comp_* subparameters.

C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp are

intended to represent the parasitic capacitances of those structures whose I-V characteristics are

described by the [Pullup], [Pulldown], [POWER Clamp] and [GND Clamp] I-V tables. For this

reason, the simulator should generate a circuit netlist so that, if defined, each of the C_comp_*

capacitors are connected in parallel with their corresponding I-V tables, whether or not the I-V

table exists. That is, the C_comp_* capacitors are positioned between the signal pad and the nodes

defined by the [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference] and [GND

Clamp Reference] keywords, or the [Voltage Range] keyword and GND.

The C_comp and C_comp_* subparameters define die capacitance. These values should not

include the capacitance of the package. C_comp and C_comp_* are allowed to use “NA” for the

min and max values only.

The Polarity, Enable, Vinl, Vinh, Vmeas, Cref, Rref, and Vref subparameters are optional.

Also, optional Rref_diff and Cref_diff subparameters discussed further in Section 6.3 support the

true differential buffer timing test loads. They are used only when the [Diff Pin] keyword connects

two models, and each buffer references the same model. The Rref_diff and Cref_diff

subparameters can be used with the Rref, Cref, and Vref subparameters for a combined differential

and signal-ended timing test load. Single-ended test loads are permitted for differential applications.

The Rref_diff and Cref_diff are recognized only when the [Diff Pin] keyword connects the models.

This applies for the true differential buffers in Section 6.3 and also for differential buffers using

identical single-ended models.

The Polarity subparameter can be defined as either Non-Inverting or Inverting, and the Enable

subparameter can be defined as either Active-High or Active-Low.

The Cref and Rref subparameters correspond to the test load that the semiconductor vendor uses

when specifying the propagation delay and/or output switching time of the model. The Vmeas

subparameter is the timing reference voltage level that the semiconductor vendor uses for the

model. Include Cref, Rref, Vref, and Vmeas information to facilitate board-level timing simulation.

The assumed connections for Cref, Rref, and Vref are shown in Figure 1.

Vref

Cref

Rref

Figure 1 - Reference Load Connections

A single-ended or true differential buffer can have Rref_diff and Cref_diff (Figure 2).

IBIS Version 6.0

34

Vref

Cref

Vref

Cref

Rref

Rref

Rref_diff
Cref_diff

Figure 2 - Single-Ended or True Differential Buffer

Other Notes: A complete [Model] description normally contains the following keywords:

[Voltage Range], [Pullup], [Pulldown], [GND Clamp], [POWER Clamp], and [Ramp]. A

Terminator model may use the [Rgnd], [Rpower], [Rac], and [Cac] keywords. However, some

models may have only a subset of these keywords. For example, an input structure normally only

needs the [Voltage Range], [GND Clamp], and possibly the [POWER Clamp] keywords. If any of

[Rgnd], [Rpower], [Rac], and [Cac] keywords is used, then the Model_type must be Terminator.

Examples:

| Signals CLK1, CLK2,... | Optional signal list, if desired

[Model] Clockbuffer

Model_type I/O

Polarity Non-Inverting

Enable Active-High

Vinl = 0.8V | Input logic "low" DC voltage, if any

Vinh = 2.0V | Input logic "high" DC voltage, if any

Vmeas = 1.5V | Reference voltage for timing measurements

Cref = 50pF | Timing specification test load capacitance value

Rref = 500 | Timing specification test load resistance value

Vref = 0 | Timing specification test load voltage

| variable typ min max

C_comp 7.0pF 5.0pF 9.0pF

C_comp_pullup 3.0pF 2.5pF 3.5pF | These four can be

C_comp_pulldown 2.0pF 1.5pF 2.5pF | used instead of

C_comp_power_clamp 1.0pF 0.5pF 1.5pF | C_comp

C_comp_gnd_clamp 1.0pF 0.5pF 1.5pF

 For a single-ended or true differential buffer (Section 6.3):

[Model] External_Model_Diff

Model_type I/O_diff | Requires [External Model]

Polarity Non-Inverting

Enable Active-High

| The [Diff Pin] vdiff value overrides the thresholds below

Vinl = 0.8V | Input logic "low" DC voltage, if any

Vinh = 2.0V | Input logic "high" DC voltage, if any

| | The true differential measurement point is at

| | the crossover voltage

| | The Vmeas value is overridden

IBIS Version 6.0

35

Vmeas = 1.5V | Reference voltage for timing measurements

| | Single-ended timing test load is still permitted

Cref = 5pF | Timing specification test load capacitance value

Rref = 500 | Timing specification test load resistance value

Vref = 0 | Timing specification test load voltage

| | These new subparameters are permitted for

| | single-ended differential operation based on the

| | [Diff Pin] keyword

Rref_diff = 100 | Timing specification differential resistance value

Cref_diff = 5pF | Timing specification differential capacitance value

Keyword: [Model Spec]

Required: No

Sub-Params: Vinh, Vinl, Vinh+, Vinh-, Vinl+, Vinl-, S_overshoot_high, S_overshoot_low,

D_overshoot_high, D_overshoot_low, D_overshoot_time, D_overshoot_area_h,

D_overshoot_area_l, D_overshoot_ampl_h, D_overshoot_ampl_l, Pulse_high, Pulse_low,

Pulse_time, Vmeas, Vref, Cref, Rref, Cref_rising, C_ref_falling, Rref_rising, Rref_falling,

Vref_rising, Vref_falling, Vmeas_rising, Vmeas_falling, Rref_diff, Cref_diff, Weak_R, Weak_I,

Weak_V

Description: The [Model Spec] keyword defines four columns under which specification

subparameters are defined.

The following subparameters are defined:

Vinh Input voltage threshold high

Vinl Input voltage threshold low

Vinh+ Hysteresis threshold high max Vt+

Vinh- Hysteresis threshold high min Vt+

Vinl+ Hysteresis threshold low max Vt-

Vinl- Hysteresis threshold low min Vt-

S_overshoot_high Static overshoot high voltage

S_overshoot_low Static overshoot low voltage

D_overshoot_high Dynamic overshoot high voltage

D_overshoot_low Dynamic overshoot low voltage

D_overshoot_time Dynamic overshoot time

D_overshoot_area_h Dynamic overshoot high area (in V-s)

D_overshoot_area_l Dynamic overshoot low area (in V-s)

D_overshoot_ampl_h Dynamic overshoot high max amplitude

D_overshoot_ampl_l Dynamic overshoot low max amplitude

Pulse_high Pulse immunity high voltage

Pulse_low Pulse immunity low voltage

Pulse_time Pulse immunity time

Vmeas Measurement voltage for timing measurements

Vref Timing specification test load voltage

Cref Timing specification capacitive load

Rref Timing specification resistance load

Cref_rising Timing specification capacitive load for rising edges

IBIS Version 6.0

36

Cref_falling Timing specification capacitive load for falling edges

Rref_rising Timing specification resistance load for rising edges

Rref_falling Timing specification resistance load for falling edges

Vref_rising Timing specification test load voltage for rising edges

Vref_falling Timing specification test load voltage for falling edges

Vmeas_rising Measurement voltage for rising edge timing measurements

Vmeas_falling Measurement voltage for falling edge timing measurements

Rref_diff Timing specification differential resistance load

Cref_diff Timing specification differential capacitive load

Weak_R Weak tie-up or tie-down resistance

Weak_I Weak tie-up or tie-down current

Weak_V Weak tie-up or tie-down voltage

Usage Rules: [Model Spec] must follow all other subparameters under the [Model] keyword.

For each subparameter contained in the first column, the remaining three columns hold its typical,

minimum and maximum values The entries of typical, minimum, and maximum must be placed on

a single line and must be separated by at least one white space. All four columns are required

under the [Model Spec] keyword. However, data is required only in the typical column. If

minimum and/or maximum values are not available, the reserved word “NA” must be used

indicating the typical value by default.

The minimum and maximum values are used for specifications subparameter values that may track

the min and max operation conditions of the [Model]. Usually it is related to the Voltage Range

settings.

Unless noted below, no subparameter requires the presence of any other subparameter.

Vinh, Vinl rules:

The threshold subparameter lines provide additional min and max column values, if needed.

The typ column values are still required and would be expected to override the Vinh and Vinl

subparameter values specified elsewhere. Note that the syntax rule that requires inserting Vinh

and Vinl under models remains unchanged even if the values are defined under the [Model

Spec] keyword.

Vinh+, Vinh-, Vinl+, Vinl- rules:

The four hysteresis subparameters (used for Schmitt trigger inputs for defining two thresholds

for the rising edges and two thresholds for falling edges) must all be defined before

independent input thresholds for rising and falling edges of the hysteresis threshold rules

become effective. Otherwise the standard threshold subparameters remain in effect. The

hysteresis thresholds shall be at the Vinh+ and Vinh- values for a low-to-high transition, and at

the Vinl+ and Vinl- values for a high-to-low transition. See Figure 3.

IBIS Version 6.0

37

Time

 Rising Edge
Switching Region

Falling Edge
Switching Region

Vinh+
Vinh-

Vinl+
Vinl-

Figure 3 - Receiver Voltage with Hysteresis Thresholds

S_overshoot_high, S_overshoot_low rules:

The static overshoot subparameters provide the DC voltage values for which the model is no

longer guaranteed to function correctly. Often these voltages are given as absolute maximum

ratings. However, if any lower *_overshoot_high or higher *_overshoot_low limit for

functional specification compliance exists, that limit should be used.

D_overshoot_high, D_overshoot_low, D_overshoot_time rules:

The dynamic overshoot values provide a time window during which the overshoot may exceed

the static overshoot limits but be below the dynamic overshoot limits and still guarantee

functional specification compliance. D_overshoot_time is required for dynamic overshoot

testing. In addition, if D_overshoot_high is specified, then S_overshoot_high is necessary for

testing beyond the static limit. Similarly, if D_overshoot_low is specified, then

S_overshoot_low is necessary for testing beyond the static limit. See Figure 4.

IBIS Version 6.0

38

Time

D_overshoot_time

Passes – Does Not Exceed Bounds

 Fails –
Exceeds Bounds

D_overshoot_time

D_overshoot_high

S_overshoot_high

D_overshoot_low

S_overshoot_low

Figure 4 - Receiver Voltage with Static and Dynamic Overshoot Limits

D_overshoot_area_h, D_overshoot_area_l, D_overshoot_ampl_h, D_overshoot_ampl_l rules:

The dynamic overshoot area values define a maximum V-s area that an overshooting signal

must not exceed. The high area is calculated from the point that a signal overshoots above the

voltage defined by the [Power Clamp Reference] keyword until the point that the signal crosses

back through this same voltage. Note that the area is defined as the complete area-under-the-

curve as bounded by the limits defined above and not a “triangular” area, as shown in Figure 5.

If [Power Clamp Reference] is not defined, then this crossing voltage is assumed to be defined

by the [Voltage Range] keyword. The low area is calculated from the point that a signal

overshoots below the voltage defined by the [GND Clamp Reference] keyword until the point

that the signal crosses back through this same voltage. If [GND Clamp Reference] is not

defined, then this crossing voltage is assumed to be 0.0 V. If D_overshoot_area_h is specified,

then D_overshoot_ampl_h must also be specified. D_overshoot_ampl_h provides a maximum

amplitude allowed for the overshoot area and is measured as voltage above the [Power Clamp

Reference] voltage. Similarly, if D_overshoot_area_l is specified, then D_overshoot_ampl_l

must also be specified. D_overshoot_ampl_l is measured as voltage below the [GND Clamp

Reference] voltage. Both amplitude parameters should be listed as absolute (non-negative)

values. Also, if D_overshoot_area_h, D_overshoot_area_l, D_overshoot_ampl_h, and

D_overshoot_ampl_l are specified, then other static and dynamic overshoot parameters are

optional.

IBIS Version 6.0

39

Time

D_overshoot_area_h
Passes – Does Not Exceed Overshoot
 Area or Amplitude

Receiver Voltage with Dynamic Area Overshoot Limits

Fails – Exceeds
 Overshoot Area
 and Amplitude

D_overshoot_ampl_h

[Power Clamp Reference]

[GND Clamp Reference]

D_overshoot_area_l

D_overshoot_ampl_l

Figure 5 - Receiver Voltage with Dynamic Area Overshoot Limits

Pulse_high, Pulse_low, Pulse_time rules:

The pulse immunity values provide a time window during which a rising pulse may exceed the

nearest threshold value but be below the pulse voltage value and still not cause the input to

switch. Pulse_time is required for pulse immunity testing. A rising response is tested only if

Pulse_high is specified. Similarly, a falling response is tested only if Pulse_low is specified.

The rising response may exceed the Vinl value, but remain below the Pulse_high value.

Similarly, the falling response may drop below the Vinh value, but remain above the Pulse_low

value. In either case the input is regarded as immune to switching if the responses are within

these extended windows. If the hysteresis thresholds are defined, then the rising response shall

use Vinh- as the reference voltage, and the falling response shall use Vinl+ as the reference

voltage. See Figure 6.

IBIS Version 6.0

40

Time

Switching

Vinh

Vinl

No Switching

Switching

Pulse_time

Pulse_time
Pulse_high Pulse_low

Figure 6 - Receiver Voltage with Pulse Immunity Thresholds

Vmeas, Vref, Cref, Rref rules:

The Vmeas, Vref, Cref and Rref values under the [Model Spec] keyword override their

respective values entered elsewhere. Note that a Vmeas, Vref, Cref or Rref subparameters may

not be used if its edge specific version (*_rising or *_falling) is used.

Cref_rising, Cref_falling, Rref_rising, Rref_falling, Vref_rising, Vref_falling, Vmeas_rising,

Vmeas_falling rules:

Use these subparameters when specifying separate timing test loads and voltages for rising and

falling edges. If one “rising” or “falling” subparameter is used, then the corresponding “rising”

or “falling” subparameter must be present. The values listed in these subparameters override

any corresponding Cref, Vref, Rref or Vmeas values entered elsewhere.

Rref_diff, Cref_diff rules:

The Rref_diff and Cref_diff values under the [Model Spec] keyword override their respective

values entered elsewhere. These subparameters are used only when the model is referenced by

the [Diff Pin] keyword. These follow the same rules as the corresponding subparameters

documented under the [Model] keyword. See Section 6.3 for more discussion on true and

single-ended differential operation.

Weak_R, Weak_I, and Weak_V rules:

If an IO circuit uses a simple weak tie-up or tie-down device (resistor or transistor) between the

chip IO pad and a power supply, Weak_R stores the resistance of this device and Weak_V

stores the voltage of the power supply to which the device is connected. A Weak_I stores the

approximate current into the device and Weak_V stores the voltage of the power supply. They

apply to both static and configurable tie-up and tie-down devices.

IBIS Version 6.0

41

The Weak_R, Weak_I, and Weak_V subparameters are optional and separate from the current-

voltage table keywords, e.g., [Pullup], [GND Clamp], etc. They do not affect how the current-

voltage tables are extracted.

(Weak_R and Weak_V) or (Weak_I and Weak_V) must always be used as a pair. Weak_R and

Weak_I must not be used together.

The current flow convention for Weak_I is similar to that of [GND Clamp] and {POWER

Clamp] tables. A positive sign documents a weak tie-down current. A negative sign

documents a weak tie-up current.

Examples:

[Model Spec]

| Subparameter typ min max

|

| Thresholds

|

Vinh 3.5 3.15 3.85 | 70% of Vcc

Vinl 1.5 1.35 1.65 | 30% of Vcc

|

| Vinh 3.835 3.335 4.335 | Offset from Vcc

| Vinl 3.525 3.025 4.025 | for PECL

|

| Hysteresis

|

Vinh+ 2.0 NA NA | Overrides the

Vinh- 1.6 NA NA | thresholds

Vinl+ 1.1 NA NA

Vinl- 0.6 NA NA | All 4 are required

|

| Overshoot

|

S_overshoot_high 5.5 5.0 6.0 | Static overshoot

S_overshoot_low -0.5 NA NA

D_overshoot_high 6.0 5.5 6.5 | Dynamic overshoot

D_overshoot_low -1.0 -1.0 -1.0 | requires

| | D_overshoot_time

D_overshoot_time 20n 20n 20n | & static overshoot

|

| Overshoot defined by area in V-s (Values from DDR2 specification)

|

D_overshoot_ampl_h 0.9 NA NA | Dynamic overshoot

D_overshoot_ampl_l 0.9 NA NA | requires area

D_overshoot_area_h 0.38n NA NA | and amplitude

D_overshoot_area_l 0.38n NA NA | parameters

|

| Pulse Immunity

|

Pulse_high 3V NA NA | Pulse immunity

Pulse_low 0 NA NA | requires

Pulse_time 3n NA NA | Pulse_time

|

| Timing Thresholds

|

Vmeas 3.68 3.18 4.68 | A 5 volt PECL

| | example

IBIS Version 6.0

42

|

| Timing test load voltage reference example

|

Vref 1.25 1.15 1.35 | An SSTL-2 example

|

|

| Rising and falling timing test load example (values from PCI-X

| specification)

|

Cref_falling 10p 10p 10p

Cref_rising 10p 10p 10p

Rref_rising 25 500 25 | typ value not specified

Rref_falling 25 500 25 | typ value not specified

Vref_rising 0 1.5 0

Vref_falling 3.3 1.5 3.6

Vmeas_rising 0.941 0.885 1.026 | vmeas = 0.285(vcc)

Vmeas_falling 2.0295 1.845 2.214 | vmeas = 0.615(vcc)

|

| Differential timing test load for true or single-ended differential model

|

Rref_diff 100 90 110

Cref_diff 5pF NA NA

|

| Weak tie-up examples:

|

Weak_R 10k NA NA

Weak_V 1.5V NA NA

|

Weak_I -10u NA NA | negative sign for

Weak_V 1.5V NA NA | tie-up current

Keyword: [Receiver Thresholds]

Required: No

Sub-Params: Vth, Vth_min, Vth_max, Vinh_ac, Vinh_dc, Vinl_ac, Vinl_dc,

Threshold_sensitivity, Reference_supply, Vcross_low, Vcross_high, Vdiff_ac, Vdiff_dc, Tslew_ac,

Tdiffslew_ac

Description: The [Receiver Thresholds] keyword defines both a set of receiver input thresholds

as well as their sensitivity to variations in a referenced supply. The subparameters are defined as

follows:

Vth, Vth_min, and Vth_max are the ideal input threshold voltages at which the output of a digital

logic receiver changes state. Vth is the nominal input threshold voltage under the voltage,

temperature and process conditions that define “typ”. Vth_min is the minimum input threshold

voltage at “typ” conditions while Vth_max is the maximum input threshold voltage at “typ”

conditions.

Vinh_ac is the voltage that a low-to-high going input waveform must reach in order to guarantee

that the receiver’s output has changed state. In other words, reaching Vinh_ac is sufficient to

guarantee a receiver state change. Vinh_ac is expressed as an offset from Vth.

Vinh_dc is the voltage that an input waveform must remain above (more positive than) in order to

guarantee that a receiver output will NOT change state. Vinh_dc is expressed as an offset from Vth.

IBIS Version 6.0

43

Vinl_ac is the voltage that a high-to-low going input waveform must reach in order to guarantee

that the receiver’s output has changed state. In other words, reaching Vinl_ac is sufficient to

guarantee a receiver state change. Vinl_ac is expressed as an offset from Vth.

Vinl_dc is the voltage that an input waveform must remain below (more negative than) in order to

guarantee that a receiver’s output will NOT change state. Vinl_dc is expressed as an offset from

Vth.

Threshold_sensitivity is a unit-less number that specifies how Vth varies with respect to the supply

voltage defined by the Reference_supply subparameter. Threshold_sensitivity is defined as:

Threshold_sensitivity must be entered as a whole number or decimal, not as a fraction.

Reference_supply indicates which supply voltage Vth tracks; i.e., it indicates which supply voltage

change causes a change in input threshold. The legal arguments to this subparameter are as follows:

Power_clamp_ref The supply voltage defined by the [POWER Clamp Reference] keyword

Gnd_clamp_ref The supply voltage defined by the [GND Clamp Reference] keyword

Pullup_ref The supply voltage defined by the [Pullup reference] keyword

Pulldown_ref The supply voltage defined by the [Pulldown reference] keyword

Ext_ref The supply voltage defined by the [External Reference] keyword

Tslew_ac and Tdiffslew_ac measure the absolute difference in time between the point at which an

input waveform crosses Vinl_ac and the point it crosses Vinh_ac. The purpose of this parameter is

to document the maximum amount of time an input signal may take to transition between Vinh_ac

and Vinl_ac and still allow the device to meet its input setup and hold specifications. Tslew_ac is

the parameter used for single ended receivers while Tdiffslew_ac must be used for receivers with

differential inputs.

Vcross_low is the least positive voltage at which a differential receiver’s input signals may cross

while switching and still allow the receiver to meet its timing and functional specifications.

Vcross_low is specified with respect to 0 V.

Vcross_high is the most positive voltage at which a differential receiver’s input signals may cross

while switching and still allow the receiver to meet its timing and functional specifications.

Vcross_high is specified with respect to 0 V.

Vdiff_dc is the minimum voltage difference between the inputs of a differential receiver that

guarantees the receiver will not change state.

Vdiff_ac is the minimum voltage difference between the inputs of a differential receiver that

guarantees the receiver will change state.

Usage Rules: [Receiver Thresholds] must follow all subparameters under the [Model] keyword

and precede all other keywords of a model except [Model Spec].

The [Receiver Thresholds] keyword is valid if the model type includes any reference to input or I/O.

For single ended receivers the Vinh_ac, Vinh_dc, Vinl_ac, Vinh_dc, Vth and Tslew_ac

subparameters are required and override the Vinh, Vinl, Vinh+/- and Vinl+/- subparameters

declared under the [Model] or [Model Spec] keywords. For single ended receivers the Vth_min,

Vth_max, Threshold_sensitivity and Reference_supply subparameters are optional. However, if

IBIS Version 6.0

44

the Threshold_sensitivity subparameter is present then the Reference_supply subparameter must

also be present.

For differential receivers (i.e., the [Receiver Thresholds] keyword is part of a [Model] statement

that describes a pin listed in the [Diff Pin] keyword), the Vcross_low, Vcross_high, Vdiff_ac,

Vdiff_dc and Tdiffslew_ac subparameters are required. The rest of the subparameters are not

applicable. The Vdiff_ac and Vdiff_dc values override the value of the vdiff subparameter

specified by the [Diff Pin] keyword. Note that Vcross_low and Vcross_high are valid over the

device’s minimum and maximum operating conditions.

Subparameter Usage Rules:

Numerical arguments are separated from their associated subparameter by an equals sign (=); white

space around the equals sign is optional. The argument to the Reference_supply subparameter is

separated from the subparameter by white space.

Vth at Minimum or Maximum Operating Conditions:

As described above, the Vth_min and Vth_max subparameters define the minimum and maximum

input threshold values under typical operating conditions. There is no provision for directly

specifying Vth under minimum or maximum operating conditions. Instead, these values are

calculated using the following equation:

Vth(min/max) = Vth* + [(Threshold_sensitivity) X (change in supply voltage)]

where Vth* is either Vth, Vth_min or Vth_max as appropriate, and the supply voltage is the one

indicated by the Reference_supply subparameter.

Examples:

A basic 3.3 V single ended receiver using only the required subparameters:

[Receiver Thresholds]

Vth = 1.5V

Vinh_ac = +225mV

Vinh_dc = +100mV

Vinl_ac = -225mV

Vinl_dc = -100mV

Tslew_ac = 1.2ns

A single ended receiver using an external threshold reference. In this case the input threshold is the

external reference voltage so Threshold_sensitivity equals 1.

[Receiver Thresholds]

Vth = 1.0V

Threshold_sensitivity = 1

Reference_supply Ext_ref

Vinh_ac = +200mV

Vinh_dc = +100mV

Vinl_ac = -200mV

Vinl_dc = -100mV

Tslew_ac = 400ps

A fully specified single ended 3.3 V CMOS receiver:

[Receiver Thresholds]

Vth = 1.5V

Vth_min = 1.45V

IBIS Version 6.0

45

Vth_max = 1.53V

Threshold_sensitivity = 0.45

Reference_supply Power_clamp_ref

Vinh_ac = +200mV

Vinh_dc = +100mV

Vinl_ac = -200mV

Vinl_dc = -100mV

Tslew_ac = 400ps

A differential receiver:

[Receiver Thresholds]

Vcross_low = 0.65V

Vcross_high = 0.90V

Vdiff_ac = +200mV

Vdiff_dc = +100mV

Tdiffslew_ac = 200ps

Keyword: [Add Submodel]

Required: No

Description: References a submodel to be added to an existing model.

Usage Rules: The [Add Submodel] keyword is invoked within a model to add the functionality

that is contained in the submodel or list of submodels in each line that follows. The first column

contains the submodel name. The second column contains a submodel mode under which the

submodel is used.

If the top-level model type is one of the I/O or 3-state models, the submodel mode may be Driving,

Non-Driving, or All. For example, if the submodel mode is Non-Driving, then the submodel is used

only in the high-Z state of a 3-state model. Set the submodel mode to All if the submodel is to be

used for all modes of operation.

The submodel mode cannot conflict with the top-level model type. For example, if the top-level

model type is an Open or Output type, the submodel mode cannot be set to Non-Driving. Similarly,

if the top-level model type is Input, the submodel mode cannot be set to Driving.

The submodel mode can be set to All to cover all permitted modes for any top-level model type

including, for example, Input, Output, and I/O.

The [Add Submodel] keyword is not defined for Series or Series_switch model types.

Refer to the Add Submodel description in Section 6.2 of this document for the descriptions of

available submodels.

Example:

[Add Submodel]

| Submodel_name Mode

Bus_Hold_1 Non-Driving | Adds the electrical characteristics of

 | [Submodel] Bus_Hold_1 for receiver or

 | high-Z mode only.

Dynamic_clamp_1 All | Adds the Dynamic_clamp_1 model for

 | all modes of operation.

IBIS Version 6.0

46

Keyword: [Driver Schedule]

Required: No

Description: Describes the relative model switching sequence for referenced models to produce a

multi-staged driver.

Usage Rules: The [Driver Schedule] keyword establishes a hierarchical order between models and

should be placed under the [Model] which acts as the top-level model. The scheduled models are

then referenced from the top-level model by the [Driver Schedule] keyword.

When a multi-staged buffer is modeled using the [Driver Schedule] keyword, all of its stages

(including the first stage, or normal driver) have to be modeled as scheduled models.

If there is support for this feature in a EDA tool, the [Driver Schedule] keyword will cause it to use

the [Pulldown], [Pulldown Reference], [Pullup], [Pullup Reference], [Voltage Range], [Ramp],

[Rising Waveform] and [Falling Waveform] keywords from the scheduled models instead of the

top-level model, according to the timing relationships described in the [Driver Schedule] keyword.

Consequently, the keywords in the above list will be ignored in the top-level model. All of the

remaining keywords not shown in the above list, and all of the subparameters will be used from the

top-level model and should be ignored in the scheduled model(s).

However, both the top-level and the scheduled model(s) have to be complete models, i.e., all of the

required keywords must be present and follow the syntactical rules.

For backwards compatibility reasons and for EDA tools which do not support multi-staged

switching, the keywords in the above list can be used in the top-level [Model] to describe the

overall characteristics of the buffer as if it was a composite model. It is not guaranteed, however,

that such a top-level model will yield the same simulation results as a full multi-stage model. It is

recommended that a “golden waveform” for the device consisting of a [Rising Waveform] table

and a [Falling Waveform] table be supplied in the top-level model to serve as a reference for

validation.

Even though some of the keywords are ignored in the scheduled model, it may still make sense in

some cases to supply correct data with them. One such situation would arise when a [Model] is

used both as a regular top-level model as well as a scheduled model.

The [Driver Schedule] table consists of five columns. The first column contains the model names

of other models that exist in the .ibs file. The remaining four columns describe delays:

Rise_on_dly, Rise_off_dly, Fall_on_dly, and Fall_off_dly. The t = 0 time of each delay is the

event when the EDA tool’s internal pulse initiates a rising or falling transition. All specified delay

values must be equal to or greater than 0. There are only five valid combinations in which these

delay values can be defined:

1) Rise_on_dly with Fall_on_dly

2) Rise_off_dly with Fall_off_dly

3) Rise_on_dly with Rise_off_dly

4) Fall_on_dly with Fall_off_dly

5) All four delays defined

(be careful about correct sequencing)

IBIS Version 6.0

47

The four delay parameters have the meaning as described below. (Note that this description applies

to buffer types which have both pullup and pulldown structures. For those buffer types which have

only a pullup or pulldown structure, the description for the missing structure can be omitted.)

Rise_on_dly is the amount of time that elapses from the internal simulator pulse initiating a

RISING edge to the t = 0 time of the waveform or ramp that turns the I-V table of the PULLUP

device ON, and the t = 0 time of the waveform or ramp that turns the I-V table of the PULLDOWN

device OFF (if they were not already turned ON and OFF, respectively, by another event).

Rise_off_dly is the amount of time that elapses from the internal simulator pulse initiating a

RISING edge to the t = 0 time of the waveform or ramp that turns the I-V table of the PULLUP

device OFF, and the t = 0 time of the waveform or ramp that turns the I-V table of the

PULLDOWN device ON (if they were not already turned ON and OFF, respectively, by another

event).

Fall_on_dly is the amount of time that elapses from the internal simulator pulse initiating a

FALLING edge to the t = 0 time of the waveform or ramp that turns the I-V table of the

PULLDOWN device ON, and the t = 0 time of the waveform or ramp that turns the I-V table of the

PULLUP device OFF (if they were not already turned ON and OFF, respectively, by another event).

Fall_off_dly is the amount of time that elapses from the internal simulator pulse initiating a

FALLING edge to the t = 0 time of the waveform or ramp that turns the I-V table of the

PULLDOWN device OFF, and the t = 0 time of the waveform or ramp that turns the I-V table of

the PULLUP device ON (if they were not already turned ON and OFF, respectively, by another

event).

In the above four paragraphs, the word “event” refers to the moment in time when the delay is

triggered by the stimulus. This stimulus is provided to the top-level model by the simulation tool.

The expiration of delays cannot generate events.

Note that some timing combinations may only be possible if the two halves of a complementary

buffer are modeled separately as two open_* models.

No [Driver Schedule] table may reference a model which itself has within it a [Driver Schedule]

keyword.

Use “NA” when no delay value is applicable. For each scheduled model the transition sequence

must be complete, i.e., the scheduled model must return to its initial state.

Only certain numerical entry combinations are permitted to define a complete transition sequence.

Table 3 gives the initial scheduled model states for each permitted set of numerical entries. The

numerical delay entries, r, r1, and r2 are relative to the internal simulator pulse rising edge, and f, f1,

and f2 are the numerical delay entries relative to internal simulator pulse falling edge. For the

cases where two delays are given relative to the same edge, the r2 entry is larger than the r1 entry,

and the f2 entry is larger than the f1 entry. For cases below, the interchanging of such values

corresponds to opposite direction switching. Once the scheduled model is set to its initial state, the

switching is controlled by the internal simulator pulse and delays relative to it.

In Table 3, the scheduled model initial states depend on the initial state of the [Model]. This top-

level [Model] state (“Low” or “High”) is a function of the stimulus pulse (or simulation control

method) and the [Model] Polarity subparameter. For example, if a [Model] Polarity is Inverting

and its stimulus pulse starts high, the [Model] initial state is “Low” and all scheduled model initial

states follow the settings under the “Low” column. Two possible four-data ordering combinations

are omitted because their initial states are ambiguous. Special rules to select the initial states would

IBIS Version 6.0

48

produce sequencing equivalent to the two-data combinations shown in the first two lines of the

table.

Table 2 – Scheduled Model Initial State

Table Numerical Delay Entries [Model] Initial State

Rise_on Rise_off Fall_on Fall_off Low High

r NA f NA Low High

NA r NA f High Low

r1 r2 NA NA Low Low

r2 r1 NA NA High High

NA NA f1 f2 High High

NA NA f2 f1 Low Low

r1 r2 f2 f1 Low Low

r2 r1 f1 f2 High High

The delay numbers r, r1, r2, and f, f1, f2 plus the associated model transitions should fit within the

corresponding pulse width durations. Smaller pulse width stimuli may change the switching

sequencing and is not supported.

Other Notes: The added models typically consist of Open_sink (Open_drain) or Open_source

models to provide sequentially increased drive strengths. The added drive may be removed within

the same transition for a momentary boost or during the opposite transition.

The syntax also allows for reducing the drive strength.

Note that the Rise_on_dly, Rise_off_dly, Fall_on_dly, Fall_off_dly parameters are single value

parameters, so typical, minimum and maximum conditions cannot be described with them directly.

In order to account for those effects, one can refer to the fastest waveform table with the delay

number and then insert an appropriate amount of horizontal lead in section in those waveforms

which need more delay.

Notice that the C_comp parameter of a multi-stage buffer is defined in the top-level model. The

value of C_comp therefore includes the total capacitance of the entire buffer, including all of its

stages. Since the rising and falling waveform measurements include the effects of C_comp, each

of these waveforms must be generated with the total C_comp present, even if the various stages of

the buffer are characterized individually.

Note: In a future release, the [Driver Schedule] keyword may be replaced by a newer method of

specification that is consistent with some other planned extensions. However, the [Driver Schedule]

syntax will continue to be supported.

Example:

[Driver Schedule]

| Model_name Rise_on_dly Rise_off_dly Fall_on_dly Fall_off_dly

 MODEL_OUT 0.0ns NA 0.0ns NA

|

| Examples of added multi-staged transitions

IBIS Version 6.0

49

 M_O_SOURCE1 0.5ns NA 0.5ns NA

| low (high-Z) to high high to low (high-Z)

 M_O_SOURCE2 0.5n 1.5n NA NA

| low to high to low low (high-Z)

 M_O_DRAIN1 1.0n NA 1.5n NA

| low to high (high-Z) high (high-Z) to low

 M_O_DRAIN2 NA NA 1.5n 2.0n

| high (high-Z) high to low to high

Keyword: [Temperature Range]

Required: Yes, if other than the preferred 0, 50, 100 degree Celsius range

Description: Defines the temperature range over which the model is to operate.

Usage Rules: List the actual die temperatures (not percentages) in the typ, min, max format. “NA”

is allowed for min and max only.

Other Notes: The [Temperature Range] keyword also describes the temperature range over which

the various I-V tables and ramp rates were derived. Refer to Section 9, "NOTES ON DATA

DERIVATION METHOD" for rules on which temperature values to put in the “min” and “max”

columns.

Example:

| variable typ min max

[Temperature Range] 27.0 -50 130.0

Keyword: [Voltage Range]

Required: Yes, if [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference], and

[GND Clamp Reference] are not present

Description: Defines the power supply voltage tolerance over which the model is intended to

operate. It also specifies the default voltage rail to which the [Pullup] and [POWER Clamp] I-V

data is referenced.

Usage Rules: Provide actual voltages (not percentages) in the typ, min, max format. “NA” is

allowed for the min and max values only.

Other Notes: If the [Voltage Range] keyword is not present, then all four of the keywords

described below must be present: [Pullup Reference], [Pulldown Reference], [POWER Clamp

Reference], and [GND Clamp Reference]. If the [Voltage Range] is present, the other keywords

are optional and may or may not be used as required. It is legal (although redundant) for an

optional keyword to specify the same voltage as specified by the [Voltage Range] keyword.

Example:

| variable typ min max

[Voltage Range] 5.0V 4.5V 5.5V

IBIS Version 6.0

50

Keyword: [Pullup Reference]

Required: Yes, if the [Voltage Range] keyword is not present

Description: Defines a voltage rail other than that defined by the [Voltage Range] keyword as the

reference voltage for the [Pullup] I-V data.

Usage Rules: Provide actual voltages (not percentages) in the typ, min, max format. “NA” is

allowed for the min and max values only.

Other Notes: This keyword, if present, also defines the voltage range over which the typ, min, and

max dV/dt_r values are derived.

Example:

| variable typ min max

[Pullup Reference] 5.0V 4.5V 5.5V

Keyword: [Pulldown Reference]

Required: Yes, if the [Voltage Range] keyword is not present

Description: Defines a power supply rail other than 0 V as the reference voltage for the

[Pulldown] I-V data. If this keyword is not present, the voltage data points in the [Pulldown] I-V

table are referenced to 0 V.

Usage Rules: Provide actual voltages (not percentages) in the typ, min, max format. “NA” is

allowed for the min and max values only.

Other Notes: This keyword, if present, also defines the voltage range over which the typ, min, and

max dV/dt_f values are derived.

Example:

| variable typ min max

[Pulldown Reference] 0V 0V 0V

Keyword: [POWER Clamp Reference]

Required: Yes, if the [Voltage Range] keyword is not present

Description: Defines a voltage rail other than that defined by the [Voltage Range] keyword as the

reference voltage for the [POWER Clamp] I-V data.

Usage Rules: Provide actual voltages (not percentages) in the typ, min, max format. “NA” is

allowed for the min and max values only.

Other Notes: Refer to the “Other Notes” section of the [GND Clamp Reference] keyword.

Example:

| variable typ min max

[POWER Clamp Reference] 5.0V 4.5V 5.5V

IBIS Version 6.0

51

Keyword: [GND Clamp Reference]

Required: Yes, if the [Voltage Range] keyword is not present

Description: Defines a power supply rail other than 0 V as the reference voltage for the [GND

Clamp] I-V data. If this keyword is not present, the voltage data points in the [GND Clamp] I-V

table are referenced to 0 V.

Usage Rules: Provide actual voltages (not percentages) in the typ, min, max format. “NA” is

allowed for the min and max values only.

Other Notes: Power Supplies: It is intended that standard TTL and CMOS models be specified

using only the [Voltage Range] keyword. However, in cases where the output characteristics of a

model depend on more than a single supply and ground, or a [Pullup], [Pulldown], [POWER

Clamp], or [GND Clamp] table is referenced to something other than the default supplies, use the

additional “reference” keywords.

Example:

| variable typ min max

[GND Clamp Reference] 0V 0V 0V

Keyword: [External Reference]

Required: Yes, if a receiver’s input threshold is determined by an external reference voltage

Description: Defines a voltage source that supplies the reference voltage used by a receiver for its

input threshold reference.

Usage Rules: Provide actual voltages (not percentages) in the typ, min max format. “NA” is

allowed for the min and max values only. Note that the numerically largest value should be placed

in “max” column, while the numerically smallest value should be placed in the “min” column.

Example:

| variable typ min max

[External Reference] 1.00V 0.95V 1.05V

Keyword: [C Comp Corner]

Required: No

Description: Used to define C_comp values associated with the typ/min/max corner

Sub-Params: C_comp, C_comp_pullup, C_comp_pulldown, C_comp_power_clamp,

C_comp_gnd_clamp

Usage Rules: If [C Comp Corner] is present, its value or values override any other C_comp*

representations. The entries are values associated with each of the typ/min/max corners rather than

entered by magnitude as with the other C_comp subparameters.

The C_comp subparameter under [C Comp Corner] is required only when C_comp_pullup,

C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp are not present. If the

C_comp subparameter is not present, at least one of the C_comp_pullup, C_comp_pulldown,

C_comp_power_clamp, or C_comp_gnd_clamp subparameters is required. It is not illegal to

IBIS Version 6.0

52

include the C_comp subparameter together with one or more of the remaining C_comp_*

subparameters, but in that case the simulator will have to make a decision whether to use C_comp

or the C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp

subparameters. Under no circumstances should the simulator use the value of C_comp

simultaneously with the values of the other C_comp_* subparameters.

C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, and C_comp_gnd_clamp are

intended to represent the parasitic capacitances of those structures whose I-V characteristics are

described by the [Pullup], [Pulldown], [POWER Clamp] and [GND Clamp] I-V tables. For this

reason, the simulator should generate a circuit netlist so that, if defined, each of the C_comp_*

capacitors is connected in parallel with its corresponding I-V table(s), whether or not the I-V

table(s) exist(s). That is, the C_comp_* capacitors are positioned between the signal pad and the

nodes defined by the [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference] and

[GND Clamp Reference] keywords, or the [Voltage Range] keyword and GND.

The C_comp and C_comp_* subparameters define die capacitance. These values should not

include the capacitance of the package. C_comp and C_comp_* are allowed to use "NA" for the

min and max values only.

Other Notes: When C_comp values are obtained by extraction under the corner process, voltage,

and temperature conditions, the C_comp* entries are often positioned with the maximum values

under the min column and the minimum values under the max column. C_comp* entries under

other keywords are entered into columns by numerical magnitude. The [C Comp Corner] entries

override all other C_comp* entries under other keywords.

Example:

[C Comp Corner]

| variable typ min max

C_comp 7.0pF 9.0pF 5.0pF

|

C_comp_pullup 3.0pF 3.5pF 2.5pF | These four can be

C_comp_pulldown 2.0pF 2.5pF 1.5pF | used instead of

C_comp_power_clamp 1.0pF 1.5pF 0.5pF | C_comp

C_comp_gnd_clamp 1.0pF 1.5pF 0.5pF

|

Keywords: [TTgnd], [TTpower]

Required: No

Description: These keywords specify the transit time parameters used to estimate the transit time

capacitances or develop transit time capacitance tables for the [GND Clamp] and [POWER Clamp]

tables.

Usage Rules: For each of these keywords, the three columns hold the transit values corresponding

to the typical, minimum and maximum [GND Clamp] or [POWER Clamp] tables, respectively.

The entries for TT(typ), TT(min), and TT(max) must be placed on a single line and must be

separated by at least one white space. All three columns are required under these keywords.

However, data is required only in the typical column. If minimum and/or maximum values are not

available, the reserved word “NA” must be used indicating the TT(typ) value by default.

IBIS Version 6.0

53

Other Notes: The transit time capacitance is added to C_comp. It is in a SPICE reference model

as Ct = TT * d(Id)/d(Vd) where d(Id)/d(Vd) defines the DC conductance at the incremental DC

operating point of the diode, and TT is the transit time. This expression does not include any

internal series resistance. Such a resistance is assumed to be negligible in practice. Assume that

the internal diode current (Id) - voltage (Vd) relationship is Id = Is * (exp(q(Vd)/kT) - 1) where Is

is the saturation current, q is electron charge, k is Boltzmann’s constant, and T is temperature in

degrees Kelvin. Then d(Id)/d(Vd) is approximately (q/kT) * Id when the diode is conducting, and

zero otherwise. This yields the simplification Ct = TT * (q/kT) * Id. The Id is found from the

[GND Clamp] and [POWER Clamp] operating points, and the corresponding TTgnd or TTpower is

used to calculate the Ct value. If the [Temperature Range] keyword is not defined, then use the

default “typ” temperature for all Ct calculations.

The effective TT parameter values are intended to APPROXIMATE the effects. They may be

different from the values found in the SPICE diode equations. Refer to Section 9, "NOTES ON

DATA DERIVATION METHOD" for extracting the effective values.

Example:

| variable TT(typ) TT(min) TT(max)

[TTgnd] 10n 12n 9n

[TTpower] 12n NA NA

Keywords: [Pulldown], [Pullup], [GND Clamp], [POWER Clamp]

Required: Yes, if they exist in the model

Description: The data points under these keywords define the I-V tables of the pulldown and

pullup structures of an output buffer and the I-V tables of the clamping diodes connected to the

GND and the POWER pins, respectively. Currents are considered positive when their direction is

into the component.

Usage Rules: In each of these sections, the first column contains the voltage value, and the three

remaining columns hold the typical, minimum, and maximum current values. The four entries,

Voltage, I(typ), I(min), and I(max) must be placed on a single line and must be separated by at least

one white space.

All four columns are required under these keywords. However, data is only required in the typical

column. If minimum and/or maximum current values are not available, the reserved word “NA”

must be used. “NA” can be used for currents in the typical column, but numeric values MUST be

specified for the first and last voltage points on any I-V table. Each I-V table must have at least 2,

but not more than 100, rows.

Other Notes: The I-V table of the [Pullup] and the [POWER Clamp] structures are “Vcc relative”,

meaning that the voltage values are referenced to the Vcc pin. (Note that, under these keywords,

all references to “Vcc” refer to the voltage rail defined by the [Voltage Range], [Pullup Reference],

or [POWER Clamp Reference] keywords, as appropriate.) The voltages in the data tables are

derived from the equation:

Vtable = Vcc – Voutput

IBIS Version 6.0

54

Therefore, for a 5 V model, -5 V in the table actually means 5 V above Vcc, which is +10 V with

respect to ground; and 10 V means 10 V below Vcc, which is -5 V with respect to ground. Vcc-

relative data is necessary to model a pullup structure properly, since the output current of a pullup

structure depends on the voltage between the output and Vcc pins and not the voltage between the

output and ground pins. Note that the [GND Clamp] I-V table can include quiescent input currents,

or the currents of a 3-stated output, if so desired.

When tabulating data for ECL models, the data in the [Pulldown] table is measured with the output

in the “logic low” state. In other words, the data in the table represents the I-V characteristics of

the output when the output is at the most negative of its two logic levels. Likewise, the data in the

[Pullup] table is measured with the output in the “logic one” state and represents the I-V

characteristics when the output is at the most positive logic level. Note that in BOTH of these

cases, the data is referenced to the Vcc supply voltage, using the equation:

Vtable = Vcc - Voutput

Monotonicity Requirements:

To be monotonic, the I-V table data must meet any one of the following 8 criteria:

1- The CURRENT axis either increases or remains constant as the voltage axis is increased.

2- The CURRENT axis either increases or remains constant as the voltage axis is decreased.

3- The CURRENT axis either decreases or remains constant as the voltage axis is increased.

4- The CURRENT axis either decreases or remains constant as the voltage axis is decreased.

5- The VOLTAGE axis either increases or remains constant as the current axis is increased.

6- The VOLTAGE axis either increases or remains constant as the current axis is decreased.

7- The VOLTAGE axis either decreases or remains constant as the current axis is increased.

8- The VOLTAGE axis either decreases or remains constant as the current axis is decreased.

An IBIS syntax checking program shall test for non-monotonic data and provide a maximum of

one warning per I-V table if non-monotonic data is found. For example:

“Warning: Line 300, Pulldown I-V table for model DC040403 is non-monotonic! Most

simulators will filter this data to remove the non-monotonic data.”

It is also recognized that the data may be monotonic if currents from both the output stage and the

clamp diode are added together as most simulators do. To limit the complexity of the IBIS syntax

checking programs, such programs will conduct monotonicity testing only on one I-V table at a

time.

It is intended that the [POWER Clamp] and [GND Clamp] tables are summed together and then

added to the appropriate [Pullup] or [Pulldown] table when a buffer is driving high or low,

respectively.

From this assumption and the nature of 3-statable buffers, it follows that the data in the clamping

table sections are handled as constantly present tables and the [Pullup] and [Pulldown] tables are

used only when needed in the simulation.

The clamp tables of an Input or I/O buffer can be measured directly with a curve tracer, with the

I/O buffer 3-stated. However, sweeping enabled buffers results in tables that are the sum of the

clamping tables and the output structures. Based on the assumption outlined above, the [Pullup]

and [Pulldown] tables of an IBIS model must represent the difference of the 3-stated and the

enabled buffer’s tables. (Note that the resulting difference table can demonstrate a non-monotonic

IBIS Version 6.0

55

shape.) This requirement enables the simulator to sum the tables, without the danger of double

counting, and arrive at an accurate model in both the 3-stated and enabled conditions.

Since in the case of a non 3-statable buffer, this difference table cannot be generated through lab

measurements (because the clamping tables cannot be measured alone), the [Pullup] and [Pulldown]

tables of an IBIS model can contain the sum of the clamping characteristics and the output structure.

In this case, the clamping tables must contain all zeroes, or the keywords must be omitted.

Example:

[Pulldown]

| Voltage I(typ) I(min) I(max)

|

 -5.0V -40.0m -34.0m -45.0m

 -4.0V -39.0m -33.0m -43.0m

| .

 0.0V 0.0m 0.0m 0.0m

| .

 5.0V 40.0m 34.0m 45.0m

 10.0V 45.0m 40.0m 49.0m

|

[Pullup] | Note: Vtable = Vcc - Voutput

|

| Voltage I(typ) I(min) I(max)

|

 -5.0V 32.0m 30.0m 35.0m

 -4.0V 31.0m 29.0m 33.0m

| .

 0.0V 0.0m 0.0m 0.0m

| .

 5.0V -32.0m -30.0m -35.0m

 10.0V -38.0m -35.0m -40.0m

|

[GND Clamp]

|

| Voltage I(typ) I(min) I(max)

|

 -5.0V -3900.0m -3800.0m -4000.0m

 -0.7V -80.0m -75.0m -85.0m

 -0.6V -22.0m -20.0m -25.0m

 -0.5V -2.4m -2.0m -2.9m

 -0.4V 0.0m 0.0m 0.0m

 5.0V 0.0m 0.0m 0.0m

|

[POWER Clamp] | Note: Vtable = Vcc - Voutput

|

| Voltage I(typ) I(min) I(max)

|

 -5.0V 4450.0m NA NA

 -0.7V 95.0m NA NA

 -0.6V 23.0m NA NA

 -0.5V 2.4m NA NA

 -0.4V 0.0m NA NA

 0.0V 0.0m NA NA

IBIS Version 6.0

56

Keywords: [ISSO PD], [ISSO PU]

Required: No

Description: The data points under the keyword [ISSO PD] define the effective current of the

pulldown structure of a buffer as a function of the voltage on the pulldown reference node (the

ground node), whereas the points under the keyword [ISSO PU] define the effective current of the

pullup structure as a function of the voltage on the pullup reference node (the power node).

Usage Rules: The first column contains the voltage value at which the currents of the remaining

three columns are obtained. The three remaining columns contain the typical, minimum, and

maximum effective current values to be defined below of pullup/pulldown stage.

All four columns are required under this keyword. However, data is only required in the typical

column. If minimum and/or maximum current values are not available, the reserved word “NA”

must be used. “NA” can be used for currents in the typical column, but numeric values MUST be

specified for the first and last voltage points in any table. Each table must have at least 2, but not

more than 100, rows.

The [ISSO PD] table voltages are relative to the [Pulldown Reference] typ/min/max values (usually

ground). The [ISSO PU] table voltages are relative to the [Pullup Reference] typ/min/max values

(also usually the [Voltage Range] voltages). In the case of the [ISSO PU] table, the voltages follow

the same Vtable = Vcc - Vmeasured convention as the [Pullup] table. Each of the tables are

aligned with and span the typical -Vcc to Vcc voltages.

If the [ISSO PD] and [ISSO PU] keywords are not present, the effect of power supply variations on

the I-V tables is not explicitly defined by the model.

The effective current table for the Isso_pd current is extracted by the following process. The buffer

is set to “logic zero.” A Vtable voltage source is inserted between the [Pulldown Reference] node

and the buffer as shown in Figure 7. This Vtable voltage is swept from -Vcc (typical) to +Vcc

(typical) and is relative to the [Pulldown Reference] typ/min/max values for the corresponding

columns. The output is connected to the GND (typical) value as shown in Figure 7.

IBIS Version 6.0

57

Low State (logic zero)

Vcc (or pullup reference typ/min/max value)

Vcc (or pullup reference typ/min/max value)

Isso_pd (function of Vtable from -Vcc to Vcc)

GND (or pulldown reference typ/min/max value)

Vtable
+

-

PD

PU

Figure 7 - Low State (Logic Zero) Isso_pd Data Collection

The effective current table for the Isso_pu current is extracted by the following process. The buffer

is set to “logic one”. A Vtable voltage source is inserted between the [Pullup Reference] node and

the buffer as shown below. This Vtable voltage is swept from -Vcc (typical) to +Vcc (typical) and

is relative to the [Pullup Reference] typ/min/max values for the corresponding columns. The

output is connected to the GND (typical) value as shown in Figure 8.

IBIS Version 6.0

58

High State (logic one)

Vcc (or pullup reference typ/min/max value)

Isso_pu (function of Vtable from -Vcc to Vcc)

GND (or pulldown reference typ/min/max value)

Vtable
-

+

PD

PU

GND (or pulldown reference typ/min/max value)

Figure 8 - High State (Logic One) Isso_pu Data Collection

For each of these extractions, the corresponding [GND Clamp] and [POWER Clamp] currents need

to be removed. Normally these are negligible. However, if on-die terminators exist, the extra

currents that are associated with them should be removed from the [ISSO PD] and [ISSO PU]

tables. The process details are not discussed here, but need to be solved by the modeler. Such

details may depend upon the contents of the [GND Clamp] and [POWER Clamp] tables and the

[GND Clamp Reference] and [POWER Clamp Reference] selections.

Currents are considered positive when their direction is into the component.

Other Notes: Simulators can use such tables to calculate modulation coefficients to modulate the

original pulldown and pullup currents when a voltage variation on the pullup and pulldown

reference nodes is revealed during power and/or ground bounce, and/or SSO simulation events.

To describe the modulation coefficients, a reference algorithm to generate an output response

producing Vout(t) for a given load including clamp currents that requires an Iout(t) is shown in

terms of pullup table currents Ipu(Vcc-Vout(t)) and pulldown table currents Ipd(Vout(t)). See

Figure 9.

IBIS Version 6.0

59

Vcc (or pullup reference typ/min/max value)

GND (or pulldown reference typ/min/max value)

Iout(t)

PD

PU
Kpu(t)*Ipu(Vcc-Vout(t))

Vout(t)

Kpd(t)*Ipd(Vout(t))

Figure 9 - Reference Data Collection

When the supplies are modulated during simulation, the modulation coefficients

Ksso_pu(Vtable_pu) and Ksso_pd(Vtable_pd) modify the equations as shown in Figure 10.

Vcc (or pullup reference typ/min/max value)

GND (or pulldown reference typ/min/max value)

Vout(t)

PD

PU
Kpu(t)*Ipu(Vcc-Vout(t))*Ksso_pu(Vtable_pu)

Vout(t)

Kpd(t)*Ipd(Vout(t))*Ksso_pd(Vtable_pd)

Figure 10 - Reference Data Collection with Supply Modulation

The Vtable_pd and Vtable_pu values may change at each time step. The Ksso_pd(Vtable_pd) and

Ksso_pu(Vtable_pu) values are derived from the dynamic reference voltage variation and [ISSO

PD] and [ISSO PU] table entries according to the equations below:

IBIS Version 6.0

60

Ksso_pd(Vtable_pd) = Isso_pd(Vtable_pd)/Isso_pd(0)

Ksso_pu(Vtable_pu) = Isso_pu(Vtable_pu)/Isso_pu(0)

Note that the extraction setup equates the currents for each column at Vtable = 0 lines to the

corresponding pulldown and pullup table currents:

Isso_pd(0) = Ipd(Vcc)

Isso_pu(0) = Ipu(Vcc)

where Vcc are the typ/min/max values for the corresponding typ/min/max columns.

For example, for a typ/min/max [Voltage Range] of 5.0V, 4.5V and 5.5V, and with the negative

reference set to GND, the Isso_pu(0) and Isso_pd(0) values for typ/min/max should be equal to the

column values as shown in Table 3.

Table 3 – Example of Setting Isso_pu and Isso_pd Values

 Typ min max

Isso_pd(0) Ipd(5.0) Ipd(4.5) Ipd(5.5)

Isso_pu(0) Ipu(5.0) Ipu(4.5) Ipu(5.5)

With no modulation, Ksso_pd(0) = 1 and Ksso_pu(0) = 1. However, if during simulation of the

typical corner the Vcc voltage drops from 5.0 to 4.7, then Vtable_pu = 5.0 - 4.7 = 0.3, and

Ksso_pu(0.3) is calculated. If at the same time the ground reference voltage at the buffer increases

to 0.2 V, then Ksso_pd(0.2) is calculated. These two modulation factors are used in the reference

model calculations to account for gate modulation effects associated with both output transistors.

These modulation factors are updated at each time step.

Note that the [ISSO PD] and [ISSO PU] keywords are designed for CMOS technology and may not

be appropriate for bipolar or ECL technologies. A single [ISSO PU] or [ISSO PD] keyword table

is appropriate for open technologies such as Open_drain, Open_source, Open_sink, etc.

As a minor source of error, actual modulation effects may lag slightly from simulated modulation

effects due to internal delays within the physical device.

Example:

| Assume [Voltage Range] is 1.8V (typ), 1.7V (min) and 1.95V (max).

|

| The table voltage entries are relative to the typ/min/max of the

| corresponding reference voltage for each table.

[ISSO PD] | Relative to the [Pulldown Reference] voltage

|

| Voltage I(typ) I(min) I(max)

|

 -1.8V 10.0m 7.0m 13.0m

| .

| .

 -0.5V 24.0m 18.0m 31.0m

IBIS Version 6.0

61

 -0.2V 27.0m 20.0m 37.0m

 0.0V 25.0m 19.0m 34.0m

 0.2V 18.0m 13.0m 26.0m

 0.5V 10.0m 7.0m 16.0m

 0.7V 5.0m 3.0m 9.0m

 1.0V 1.0m 0.7m 3.0m

| .

| .

 1.8V 0.0m 0.0m 0.0m

|

[ISSO_PU] | Relative to the [Pullup Reference] voltage)

|

| Voltage I(typ) I(min) I(max)

|

 -1.8V -10.0m -9.0m -14.0m

| .

| .

 -0.6V -28.0m -19.0m -40.0m

 -0.4V -31.0m -22.0m -43.0m

 -0.2V -29.0m -21.0m -40.0m

 0.0V -27.0m -19.0m -38.0m

 0.2V -21.0m -14.0m -31.0m

 0.4V -14.0m -9.0m -22.0m

| .

| .

 1.8V 0.0m 0.0m 0.0m

Keywords: [Rgnd], [Rpower], [Rac], [Cac]

Required: Yes, if they exist in the model

Description: The data for these keywords define the resistance values of Rgnd and Rpower

connected to GND and the POWER pins, respectively, and the resistance and capacitance values

for an AC terminator. See Figure 11.

Usage Rules: For each of these keywords, the three columns hold the typical, minimum, and

maximum resistance values. The three entries for R(typ), R(min), and R(max), or the three entries

for C(typ), C(min), and C(max), must be placed on a single line and must be separated by at least

one white space. All three columns are required under these keywords. However, data is only

required in the typical column. If minimum and/or maximum values are not available, the reserved

word “NA” must be used indicating the R(typ) or C(typ) value by default. Note that only one

instance of any one of these keywords is permitted within any single [Model]. For example, [Rgnd]

may not be used twice under the same [Model] description.

Other Notes: [Rpower] is connected to “Vcc” and [Rgnd] is connected to “GND”. However,

[GND Clamp Reference] voltages, if defined, apply to [Rgnd]. [POWER Clamp Reference]

voltages, if defined, apply to [Rpower]. Either or both [Rgnd] and [Rpower] may be defined and

may coexist with [GND Clamp] and [POWER Clamp] tables. If the terminator consists of a series

R and C (often referred to as either an AC or RC terminator), then both [Rac] and [Cac] are

required. When [Rgnd], [Rpower], or [Rac] and [Cac] are specified, the Model_type must be

Terminator.

IBIS Version 6.0

62

 [Voltage Range] or
[POWER Clamp Reference]

GND or
[GND Clamp
Reference]

POWER_clamp I-V Rpower [Package] Keyword
Subparameters *

I-V

TERMINATOR Model

Rgnd

Rac

Cac C_pkg

R_pkg L_pkg

PIN

C_comp

* Note: More advanced package parameters are available
 within this standard, including more detailed
 power and ground net descriptions.

GND_clamp

Figure 11 - [Rgnd], [Rpower], [Rac], [Cac] in Relation to Package and Buffer Data

IBIS Version 6.0

63

Example:

| variable R(typ) R(min) R(max)

[Rgnd] 330ohm 300ohm 360ohm | Parallel Terminator

[Rpower] 220ohm 200ohm NA

|

[Rac] 30ohm NA NA

|

| variable C(typ) C(min) C(max) | AC terminator

[Cac] 50pF NA NA

Keywords: [On], [Off]

Required: Yes, both [On] and [Off] for Series_switch Model_types only

Description: The “On” state electrical models are positioned under [On]. The “Off” state

electrical models are positioned under [Off].

Usage Rules: These keywords are only valid for Series_switch Model_types. Only keywords

associated with Series_switch electrical models are permitted under [On] or [Off]. The Series

electrical models describe the path for one state only and do not use the [On] and [Off] keywords.

In Series_switch models, [On] or [Off] must be positioned before any of the [R Series], [L Series],

Rl Series], [C Series], [Lc Series], [Rc Series], [Series Current], and [Series MOSFET] keywords.

There is no provision for any of these keywords to be defined once, but to apply to both states.

Example:

[On]

| ... On state keywords such as [R Series], [Series Current], [Series MOSFET]

[Off]

| ... Off state keywords such as [R Series], [Series Current]

Keywords: [R Series], [L Series], [Rl Series], [C Series], [Lc Series], [Rc Series]

Required: Yes, if they exist in the model

Description: The data for these keywords allow the definition of Series or Series_switch R, L or

C paths.

Usage Rules: For each of these keywords, the three columns hold the typical, minimum, and

maximum resistance values. The three entries must be placed on a single line and must be

separated by at least one white space. All three columns are required under these keywords.

However, data is only required in the typical column. If minimum and/or maximum values are not

available, the reserved word “NA” must be used.

Note that only one instance of any one of these keywords is permitted within any single [On] or

[Off] keyword for [Model]s of type Series_switch. For example, [L Series] may not be used twice

under the same [Off] description. Similarly, only one instance of any one of these keyword is

permitted within any single [Model] of type Series.

Other Notes: This series RLC model is defined to allow IBIS to model simple passive models

and/or parasitics.

These keywords are valid only for Series or Series_switch Model_types.

IBIS Version 6.0

64

The model is shown in Figure 12.

Pin 1 Rl Series

Rc SeriesLc Series

R Series

L Series

C Series

Pin 2

Figure 12 - Series Element Associations

[Rl Series] shall be defined only if [L Series] exists. [Rl Series] is 0 ohms if it is not defined in the

path.

[Rc Series] and [Lc Series] shall be defined only if [C Series] exists. [Rc Series] is 0 ohms if it is

not defined in the path. [Lc Series] is 0 henries if it is not defined in the path.

C_comp values are ignored for series models.

Example:

| variable R(typ) R(min) R(max)

[R Series] 8ohm 6ohm 12ohm

|

| variable L(typ) L(min) L(max)

[L Series] 5nH NA NA

| variable R(typ) R(min) R(max)

[Rl Series] 4ohm NA NA

|

| variable C(typ) C(min) C(max) | The other elements

[C Series] 50pF NA NA | are 0 impedance

Keyword: [Series Current]

Required: Yes, if they exist in the model

Description: The data points under this keyword define the I-V tables for voltages measured at

Pin 1 with respect to Pin 2. Currents are considered positive if they flow into Pin 1. Pins 1 and 2

are listed under the [Series Pin Mapping] keyword under columns [Series Pin Mapping] and pin_2,

respectively.

Usage Rules: The first column contains the voltage value, and the remaining columns hold the

typical, minimum, and maximum current values. The four entries, Voltage, I(typ), I(min), and

I(max) must be placed on a single line and must be separated by at least one white space.

All four columns are required under these keywords. However, data is only required in the typical

column. If minimum and/or maximum current values are not available, the reserved word “NA”

must be used. “NA” can be used for currents in the typical column, but numeric values MUST be

IBIS Version 6.0

65

specified for the first and last voltage points on any I-V table. Each I-V table must have at least 2,

but not more than 100 rows.

Other Notes: There is no monotonicity requirement. However the model supplier should realize

that it may not be possible to derive a behavioral model from non-monotonic data. This keyword is

valid only for Series or Series_switch Model_types.

The model is shown in Figure 13.

Pin 1

Table Current

Pin 2
+ Table Voltage -

Figure 13 - [Series Current] Voltage Polarity and Current Direction

C_comp values are ignored for [Series Current] models.

Example:

[Series Current]

| Voltage I(typ) I(min) I(max)

 -5.0V -3900.0m -3800.0m -4000.0m

 -0.7V -80.0m -75.0m -85.0m

 -0.6V -22.0m -20.0m -25.0m

 -0.5V -2.4m -2.0m -2.9m

 -0.4V 0.0m 0.0m 0.0m

 5.0V 0.0m 0.0m 0.0m

Keyword: [Series MOSFET]

Required: Yes, for series MOSFET switches

Description: The data points under this keyword define the I-V tables for voltages measured at

Pin 2 for a given Vds setting. Currents are considered positive if they flow into Pin 1. Pins 1 and 2

are listed under the [Series Pin Mapping] keyword under [Series Pin Mapping] and pin_2 columns,

respectively. See Figure 14.

Sub-Params: Vds

Usage Rules: The first column contains the voltage value, and the three remaining columns hold

the typical, minimum, and maximum current values. The four entries, Voltage, I(typ), I(min), and

I(max) must be placed on a single line and must be separated by at least one white space.

All four columns are required under this keyword. However, data is only required in the typical

column. If minimum and/or maximum current values are not available, the reserved word “NA”

must be used. “NA” can be used for currents in the typical column, but numeric values MUST be

specified for the first and last voltage points on any I-V table. Each I-V table must have at least 2,

but not more than 100 rows.

IBIS Version 6.0

66

Other Notes: There is no monotonicity requirement. However the model supplier should realize

that it may not be possible to derive a behavioral model from non-monotonic data.

Pin 1

Table Current

Pin 2

+ Vds -

NMOS

Vcc

Vs

g

-

d s

g
PMOS

+ Voltage = Vcc - Vs

Ids

Figure 14 - [Series MOSFET] Voltage Polarities and Current Direction

Either of the FETs could be removed (or have zero current contribution). Thus this model covers

all four conditions: off, single NMOS, single PMOS, and parallel NMOS/PMOS.

Voltage = Table Voltage = Vtable = Vcc - Vs

Ids = Table Current for a given Vcc and Vds

Internal Logic that is generally referenced to the power rail is used to set the NMOS MOSFET

switch to its “On” state. Internal logic, likewise referenced to ground, is used to set the PMOS

device to its “On” state if the PMOS device is present. Thus, the [Voltage Range] settings provide

the assumed gate voltages. If the [POWER Clamp Reference] exists, it overrides the [Voltage

Range] value. The table entries are actually Vgs values of the NMOS device and Vcc - Vgs values

of the PMOS device, if present. The polarity conventions are identical with those used for other

tables that are referenced to power rails. Thus, the voltage column can be viewed as a table

defining the source voltages Vs according to the convention: Vtable = Vcc - Vs. This convention

remains even without the NMOS device.

If the switch is used in an application such as interfacing between 3.3 V and 5.0 V logic, the Vcc

may be biased at a voltage (such as 4.3 V) that is different from a power rail voltage (such as 5.0 V)

used to create the model. Just readjust the [Voltage Range] entries (or [POWER Clamp Reference]

entries).

One fundamental assumption in the MOSFET switch model is that it operates in a symmetrical

manner. The tables and expressions are given assuming that Vd >= Vs. If Vd < Vs, then apply the

same relationships under the assumption that the source and drain nodes are interchanged. A

consequence of this assumption is that the Vds subparameter is constrained to values Vds > 0. It is

assumed that with Vds = 0 the currents will be 0 mA. A further consequence of this assumption

that would be embedded in the analysis process is that the voltage table is based on the side of the

model with the lowest voltage (and that side is defined as the source). Thus the analysis must

IBIS Version 6.0

67

allow current to flow in both directions, as would occur due to reflections when the switch is

connected in series with an unterminated transmission line.

The model data is used to create an On state relationship between the actual drain to source current,

ids, and the actual drain to source voltage, vds:

ids = f(vds).

This functional relationship depends on the actual source voltage Vs and can be expressed in terms

of the corresponding table currents associated with Vs (and expressed as a function of Vtable).

If only one [Series MOSFET] table is supplied (as a first order approximation), the functional

relationship is assumed to be linearly related to the table drain to source current, Ids, for the given

Vds subparameter value and located at the existing gate to source voltage value Vtable. This table

current is denoted as Ids(Vtable, Vds). The functional relationship becomes:

ids = Ids(Vtable, Vds) * vds/Vds.

More than one [Series MOSFET] table under a [Model] keyword is permitted. However, the usage

of this data is simulator dependent. Each table must begin with the [Series MOSFET] keyword and

Vds subparameter. Each successive [Series MOSFET] table must have a different subparameter

value for Vds. The number of tables for any specific [Model] must not exceed 100.

C_comp values are ignored for [Series MOSFET] models.

Examples:

| An NMOS Example

|

[On]

[Series MOSFET]

Vds = 1.0

| Voltage I(typ) I(min) I(max)

 5.0V 257.9m 153.3m 399.5m | Defines the Ids current as a

 4.0V 203.0m 119.4m 317.3m | function of Vtable, for Vds = 1.0

 3.0V 129.8m 74.7m 205.6m

 2.0V 31.2m 16.6m 51.0m

 1.0V 52.7p 46.7p 56.7p

 0.0V 0.0p 0.0p 0.0p

|

| A PMOS/NMOS Example

|

[On]

[Series MOSFET]

Vds = 0.5

| Voltage I(typ) I(min) I(max)

0.0 48.6ma NA NA

0.1 47.7ma NA NA

0.2 46.5ma NA NA

0.3 46.1ma NA NA

0.4 45.3ma NA NA

0.5 44.4ma NA NA

0.6 42.9ma NA NA

IBIS Version 6.0

68

0.7 42.3ma NA NA

0.8 41.2ma NA NA

0.9 39.7ma NA NA

1.0 38.6ma NA NA

1.1 38.1ma NA NA

1.2 38.6ma NA NA

1.3 40.7ma NA NA

1.4 45.0ma NA NA

1.5 49.2ma NA NA

1.6 52.3ma NA NA

1.7 55.1ma NA NA

1.8 57.7ma NA NA

1.9 58.8ma NA NA

2.0 58.9ma NA NA

2.1 59.2ma NA NA

2.2 59.3ma NA NA

2.3 59.4ma NA NA

2.4 59.8ma NA NA

2.5 60.1ma NA NA

2.6 61.8ma NA NA

2.7 62.3ma NA NA

2.8 63.4ma NA NA

2.9 64.4ma NA NA

3.0 65.3ma NA NA

3.1 66.0ma NA NA

3.2 66.8ma NA NA

3.3 68.2ma NA NA

Keyword: [Ramp]

Required: Yes, except for inputs, terminators, Series, and Series_switch model types

Description: Defines the rise and fall times of a buffer. The ramp rate does not include

packaging but does include the effects of the C_comp or C_comp_* parameters.

Sub-Params: dV/dt_r, dV/dt_f, R_load

Usage Rules: The rise and fall time is defined as the time it takes the output to go from 20% to

80% of its final value. The ramp rate is defined as:

The ramp rate must be specified as an explicit fraction and must not be reduced. The [Ramp]

values can use “NA” for the min and max values only. The R_load subparameter is optional if the

default 50 ohm load is used. The R_load subparameter is required if a non-standard load is used.

Example:

[Ramp]

| variable typ min max

dV/dt_r 2.20/1.06n 1.92/1.28n 2.49/650p

dV/dt_f 2.46/1.21n 2.21/1.54n 2.70/770p

R_load = 300ohms

IBIS Version 6.0

69

Keywords: [Rising Waveform], [Falling Waveform]

Required: No

Description: Describes the shape of the rising and falling edge waveforms of a driver.

Sub-Params: R_fixture, V_fixture, V_fixture_min, V_fixture_max, C_fixture, L_fixture, R_dut,

L_dut, C_dut

Usage Rules: Each [Rising Waveform] and [Falling Waveform] keyword introduces a table of

voltage versus time points that describe the shape of an output waveform. These voltage versus

time points are taken under the conditions specified by the R/L/C/V_fixture and R/L/C_dut

subparameters. The table itself consists of one column of time points, then three columns of

voltage points in the standard typ, min, and max format. The four entries must be placed on a

single line and must be separated by at least one white space. All four columns are required.

However, data is only required in the typical column. If minimum or maximum data is not

available, use the reserved word “NA”. The first value in the time column need not be “0”. Time

values must increase as one parses down the table. The waveform table can contain a maximum of

1000 data rows. A maximum of 100 waveform tables are allowed per model.

Note that for backward compatibility, the existing [Ramp] keyword is still required. The data in

the waveform table is taken with the effects of the C_comp parameter included.

A waveform table must include the entire waveform; i.e., the first entry (or entries) in a voltage

column must be the DC voltage of the output before switching and the last entry (or entries) of the

column must be the final DC value of the output after switching. Each table must contain at least

two entries. Thus, numerical values are required for the first and last entries of any column

containing numerical data.

The data in all of the waveform tables should be time correlated. In other words, the edge data in

each of the tables (rising and falling) should be entered with respect to a single point in time when

the input stimulus is assumed to have initiated a logic transition. All waveform extractions should

reference a common input stimulus time in order to provide a sufficiently accurate alignment of

waveforms. The first line in each waveform table should be assumed to be the reference point in

time corresponding to a logic transition. For example, assume that some internal rising edge logic

transition starts at time = 0. Then a rising edge voltage-time table might be created starting at time

zero. The first several table entries might be some “lead-in” time caused by some undefined

internal buffer delay before the voltage actually starts transitioning. The falling edge stimulus (for

the purpose of setting reference time for the voltage-time table) should also start at time = 0. And,

the falling edge voltage-time table would be created starting at time zero with a possibly different

amount of “lead-in” time caused by a possibly different but corresponding falling edge internal

buffer delay. Any actual device differences in internal buffer delay time between rising and falling

edges should appear as differing lead-in times between the rising and the falling waveforms in the

tables just as any differences in actual device rise and fall times appear as differing voltage-time

entries in the tables.

A [Model] specification can contain more than one rising edge or falling edge waveform table.

However, each new table must begin with the appropriate keyword and subparameter list as shown

below. If more than one rising or falling edge waveform table is present, then the data in each of

the respective tables must be time correlated. In other words, the rising (falling) edge data in each

of the rising (falling) edge waveform tables must be entered with respect to a common reference

point on the input stimulus waveform.

IBIS Version 6.0

70

The “fixture” subparameters specify the loading conditions under which the waveform is taken.

The R_dut, C_dut, and L_dut subparameters are analogous to the package parameters R_pkg,

C_pkg, and L_pkg and are used if the waveform includes the effects of pin inductance/capacitance.

Figure 15 shows the interconnection of these elements.

TEST FIXTURE

L_dut
DUT
die

V_fixture

PACKAGE

R_dut

C_dut

R_fixtureL_fixture

C_fixture

Figure 15 - [Rising Waveform] and [Falling Waveform] Fixtures

NOTE: The use of L_dut, R_dut, and C_dut is strongly discouraged in developing waveform data

from simulation models. Some simulators may ignore these parameters because they may

introduce numerical time constant artifacts.

Only the R_fixture and V_fixture subparameters are required; the rest of the subparameters are

optional. If a subparameter is not used, its value defaults to zero. The subparameters must appear

in the text after the keyword and before the first row of the waveform table.

V_fixture defines the voltage for typ, min, and max supply conditions. However, when the fixture

voltage is related to the power supply voltages, then the subparameters V_fixture_min and

V_fixture_max can be used to further specify the fixture voltage for min and max supply voltages.

NOTE: Test fixtures with R_fixture and V_fixture, V_fixture_min, and V_fixture_max only are

strongly encouraged because they provide the BEST set of data needed to produce the best model

for simulation. C_fixture and L_fixture can be used to produce waveforms which describe the

typical test case setups for reference.

NOTE: In most cases two [Rising Waveform] tables and two [Falling Waveform] tables will be

necessary for accurate modeling.

All tables assume that the die capacitance is included. Potential numerical problems associated with

processing the data using the effective C_comp (or C_comp_* values as appropriate) for effective

die capacitance may be handled differently among simulators.

Example:

[Rising Waveform]

R_fixture = 50

V_fixture = 0.0

| C_fixture = 50p | These are shown, but are generally not recommended

| L_fixture = 2n

| C_dut = 7p

| R_dut = 1m

| L_dut = 1n

| Time V(typ) V(min) V(max)

IBIS Version 6.0

71

 0.0000s 25.2100mV 15.2200mV 43.5700mV

 0.2000ns 2.3325mV -8.5090mV 23.4150mV

 0.4000ns 0.1484V 15.9375mV 0.3944V

 0.6000ns 0.7799V 0.2673V 1.3400V

 0.8000ns 1.2960V 0.6042V 1.9490V

 1.0000ns 1.6603V 0.9256V 2.4233V

 1.2000ns 1.9460V 1.2050V 2.8130V

 1.4000ns 2.1285V 1.3725V 3.0095V

 1.6000ns 2.3415V 1.5560V 3.1265V

 1.8000ns 2.5135V 1.7015V 3.1600V

 2.0000ns 2.6460V 1.8085V 3.1695V

| ...

 10.0000ns 2.7780V 2.3600V 3.1670V

|

[Falling Waveform]

R_fixture = 50

V_fixture = 5.5

V_fixture_min = 4.5

V_fixture_max = 5.5

| Time V(typ) V(min) V(max)

 0.0000s 5.0000V 4.5000V 5.5000V

 0.2000ns 4.7470V 4.4695V 4.8815V

 0.4000ns 3.9030V 4.0955V 3.5355V

 0.6000ns 2.7313V 3.4533V 1.7770V

 0.8000ns 1.8150V 2.8570V 0.8629V

 1.0000ns 1.1697V 2.3270V 0.5364V

 1.2000ns 0.7539V 1.8470V 0.4524V

 1.4000ns 0.5905V 1.5430V 0.4368V

 1.6000ns 0.4923V 1.2290V 0.4266V

 1.8000ns 0.4639V 0.9906V 0.4207V

 2.0000ns 0.4489V 0.8349V 0.4169V

| ...

 10.0000ns 0.3950V 0.4935V 0.3841V

Keyword: [Composite Current]

Required: No

Description: Describes the shape of the rising and falling edge current waveforms from the power

reference terminal of the buffer.

Usage Rules: The [Composite Current] keyword is positioned under the last row of the [Rising

Waveform] table (for rising waveform currents) or [Falling Waveform] table (for falling waveform

currents). The keywords are followed by a table of current versus time rows (I-T) that describe the

shape of a current waveform. These I-T tables inherit the test fixture load of the [Rising Waveform]

or [Falling Waveform] R/L/C/V_fixture and R/L/C_dut subparameters.

The [Composite Current] keyword is optional. It can be omitted, or it can be positioned under

some or all of the rising and falling waveform tables.

The table itself consists of one column of time points, then three columns of current points in the

standard typ, min, and max format. The four entries must be placed on a single line and must be

separated by at least one white space. All four columns are required. However, data is only

required in the typical column. If minimum or maximum data is not available, use the reserved

IBIS Version 6.0

72

word “NA”. The first value in the time column need not be “0”. Time values must increase as one

parses down the table. The waveform table can contain a maximum of 1000 data points.

The I-T table data must be time-correlated with the V-T data above it. That is, the I-T data should

be entered with respect to the same point in time that the V-T table above it references and for the

given *_fixture load. See the [Rising Waveform] and [Falling Waveform] section for more

information about the common input stimulus time. Note that additional "lead-in" time may need

to be added to all V-T waveforms, as a portion of the I-T waveform data describes pre-driver

current that may occur earlier in time than the V-T rising or falling edge transitions.

Figure 16 illustrates a general configuration from which a [Rising Waveform] or [Falling

Waveform] is extracted. The DUT die shows all of the available power and ground pin reference

voltage terminals. For many buffers, only one power pin and one common ground pin terminal are

used. The absolute GND is the reference for the V_fixture voltage and the package model

equivalent network. It can also serve as a reference for C_comp, unless C_comp is optionally split

into component attached to the other reference voltages.

The [Composite Current] I-T table includes all of the current through the [Pullup Reference]

terminal. If the [POWER Clamp Reference] terminal is the same as the [Pullup Reference]

terminal (according to the [Pin Mapping] keyword table), the [Composite Current] entries include

the currents through both the [POWER Clamp] and [Pullup] sections of the DUT (for example,

when an on-die terminator is connected to the power reference terminal). Note that the terminals

are shown in terms of separately defined reference voltages, but still exist even if they are defined

with default [Voltage Range] or 0 V settings.

TEST FIXTURE

L_dut

[GND Clamp Reference]

DUT
die

V_fixture

PACKAGE

R_dut

C_dut

R_fixtureL_fixture

C_fixture

[Pulldown Reference]

[Composite Current]

[POWER Clamp Reference]

[Pullup Reference] – (the power reference terminal)

[External Reference] – (used only for non-driver modes)

Figure 16 - [External Reference] - (used only for non-driver modes)

IBIS Version 6.0

73

For *_ECL model types, the [Pullup] and [Pulldown] sections of the DUT share the same power

reference terminal. The [Composite Current] includes the currents through both sections.

Other Notes: Figure 17 documents some expected internal paths for a useful special case where

only one common power pin (VDDQ) and one common ground exists (GND).

I_byp

Black Box

P

[Composite Current]

L_VDDQ

C_p+b I_pre I_cb

I_term I_sig

GND Clamp

Sig

POWER Clamp

VDDQ

N

R_VDDQ

Pre-Driver
Circuit

powered by
VDDQ

L_GND R_GND

E
S
R

E
S
L

Figure 17 - [Composite Current] Internal Current Paths

IBIS Version 6.0

74

Other elements in a more detailed typical (per buffer) model are:

I_byp - Bypass current

I_pre - Pre-Driver current

I_cb - Crow-bar current

I_term - Termination current (optional)

L_VDDQ - On-die inductance of I/O Power

R_VDDQ - On-die resistance of I/O Power

L_GND - On-die inductance of Ground

R_GND - On-die resistance of Ground

C_p+b - Bypass + Parasitic Capacitance

ESR - Equivalent Series Resistance for on-die Decap

ESL - Equivalent Series Inductance for on-die Decap

While the [Composite Current] already includes the buffer I_byp current, some Series model type

elements may be used to document an equivalent bypass impedance to improve simulation results.

Such an equivalent impedance can be extracted on a per buffer basis, but summed and expressed as

a total equivalent impedance between the power and ground pins of the component with the Series

model type keywords, including [C Series], [Lc Series], [Rc Series], and [R Series] under a

separate [Model]. These elements are connected using the [Series Pin Mapping] keyword. Paths

between several voltage rails can be modeled in this manner. The [Pin Mapping] keyword

documents what buffers share common and often isolated power rails.

The C_p+b value might include the detailed distribution of C_comp when C_comp* is attached to

several rails. If the C_comp value and the C_p+b value are about the same magnitude, the [C

Series] value should be adjusted to avoid double counting.

The power reference terminal (VDDQ) is usually the [Pullup Reference], or the default [Voltage

Range] terminal. The [Pulldown Reference] terminal is usually at the GND connection.

The [Composite Current] can still be defined for model types without the [Pullup] keywords (such

as Open_drain) because the [Pullup Reference] or [Voltage Range] are still required. Pre-driver

and other internal paths still can exist.

In most cases six [Composite Current] tables are recommended for accurate modeling. The first

four tables correspond to the recommended fixture conditions for [Rising Waveform] and [Falling

Waveform] tables (normally 50 ohm loads to Vdd and GND). Two additional waveforms for no

load conditions (such as with an R_fixture of 1.0 Megaohm) are useful. However, some EDA tools

process only the first four waveforms. So the additional open load waveforms for I-T tables should

be in [Rising Waveform] and [Falling Waveform] tables that are positioned after the other V-T

tables to maintain the best output response simulation accuracy.

For Open_drain and Open_source technologies, two tables are often specified (one for the [Rising

Waveform] and one for the [Falling Waveform]). The tables should be positioned in front of any

other optional waveform tables because some EDA tools process just the first two tables. Also, the

open load tables may not yield meaningful simulations unless internal on-die terminators exist.

When the [Model] is configured for differential operation with the [Diff Pin] keyword, the

individual I-T currents for each [Model] are used as an approximation, and may not accurately

conform to the measured currents under actual differential operation.

The [Composite Current] table can be derived from currents measured at the [Pulldown Reference]

(GND) node, but adjusted for the current flowing through the output pin and at other terminals.

IBIS Version 6.0

75

The [Pin Mapping] keyword is used to document how buffers with common voltage rails are

connected. The effective impedances for each buffer between the [Pullup Reference] and

[Pulldown Reference] are then combined to form the total effective impedance between the voltage

rails.

The [Composite Current] keyword does not accurately document the effects of controlled switching

buffers such as those with [Submodel] or [Driver Schedule] keywords. The currents associated

with [Submodel] switching under specified test load conditions can occur at different times under

other load conditions. The scheduled models under the [Driver Schedule] keyword can be attached

to different voltage rails in an undocumented manner.

Example:

[Rising Waveform]

R_fixture = 50.0

V_fixture = 0.0

| ...

| ... | Rising Waveform table

| ...

[Composite Current]

|

| Time I(typ) I(min) I(max)

0 4.243E-05 NA NA

4.00E-11 4.244E-05 NA NA

8.00E-11 4.242E-05 NA NA

1.20E-10 4.265E-05 NA NA

1.60E-10 3.610E-05 NA NA

2.00E-10 3.903E-03 NA NA

..

..

..

3.80E-09 2.012E-02 NA NA

3.84E-09 2.012E-02 NA NA

3.88E-09 2.012E-02 NA NA

3.92E-09 2.012E-02 NA NA

3.96E-09 2.012E-02 NA NA

4.00E-09 2.012E-02 NA NA

|

[Falling Waveform]

R_fixture = 50.0

V_fixture = 1.8

| ...

| ... | Falling Waveform table

| ...

[Composite Current]

|

| Time I(typ) I(min) I(max)

0 4.302E-05 NA NA

4.00E-11 4.299E-05 NA NA

8.00E-11 4.304E-05 NA NA

1.20E-10 4.287E-05 NA NA

1.60E-10 4.782E-05 NA NA

2.00E-10 1.459E-04 NA NA

..

..

..

IBIS Version 6.0

76

3.80E-09 4.933E-05 NA NA

3.84E-09 5.211E-05 NA NA

3.88E-09 5.490E-05 NA NA

3.92E-09 5.441E-05 NA NA

3.96E-09 4.842E-05 NA NA

4.00E-09 4.244E-05 NA NA

|

| ... etc.

6.2 ADD SUBMODEL DESCRIPTION

The [Add Submodel] keyword can be used under a top-level [Model] keyword to add special-

purpose functionality to the existing top-level model. This section describes the structure of the

top-level model and the submodel.

Top-Level Model:

When special-purpose functional detail is needed, the top-level model can call one or more

submodels. The [Add Submodel] keyword is positioned after the initial set of required and

optional subparameters of the [Model] keyword and among the keywords under [Model].

The [Add Submodel] keyword lists of name of each submodel and the permitted mode (Driving,

Non-Driving or All) under which each added submodel is used.

Submodel:

A submodel is defined using the [Submodel] keyword. It contains a subset of keywords and

subparameters used for the [Model] keyword along with other keywords and subparameters that are

needed for the added functionality.

The [Submodel] and [Submodel Spec] keywords are defined first since they are used for all

submodels.

The only required subparameter in [Submodel] is Submodel_type to define the list of submodel

types. No subparameters under [Model] are permitted under the [Submodel] keyword.

The following keywords that are defined under the [Model] keyword are supported by the

[Submodel] keyword:

[Pulldown]

[Pullup]

[GND Clamp]

[POWER Clamp]

[Ramp]

[Rising Waveform]

[Falling Waveform]

The [Voltage Range], [Pullup Reference], [Pulldown Reference], [GND Clamp Reference], and

[POWER Clamp Reference] keywords are not permitted. The voltage settings are inherited from

the top-level model. The following additional keywords are used only for the [Submodel] and are

documented in this section:

[Submodel Spec]

[GND Pulse Table]

[POWER Pulse Table]

The application of these keywords depends upon the Submodel_type entries listed below:

Dynamic_clamp

Bus_hold

Fall_back

Permitted keywords that are not defined for any of these submodel types are ignored. The rules for

what set of keywords are required are found under the Dynamic Clamp, Bus Hold, and Fall Back

headings of this section.

IBIS Version 6.0

78

Keyword: [Submodel]

Required: No

Description: Used to define a submodel, and its attributes.

Sub-Params: Submodel_type

Usage Rules: Each submodel must begin with the keyword [Submodel]. The submodel name

must match the one that is listed under an [Add Submodel] keyword and must not contain more

than 20 characters. A .ibs file must contain enough [Submodel] keywords to cover all of the model

names specified under the [Add Submodel] keyword.

Submodel_type subparameter is required and must be one of the following:

Dynamic_clamp, Bus_hold, Fall_back

The C_comp subparameter is not permitted under the [Submodel] keyword. The total effective die

capacitance including the submodel contributions are provided in the top-level model.

Other Notes: The following list of keywords that are defined under the [Model] keyword can be

used under [Submodel]:

[Pulldown], [Pullup], [GND Clamp], [POWER Clamp], [Ramp], [Rising Waveform], and [Falling

Waveform].

The following list of additional keywords can be used:

[Submodel Spec], [GND Pulse Table], and [POWER Pulse Table].

Example:

[Submodel] Dynamic_clamp1

Submodel_type Dynamic_clamp

Keyword: [Submodel Spec]

Required: No

Description: The [Submodel Spec] keyword defines four columns under which specification and

information subparameters are defined for submodels.

Sub-Params: V_trigger_r, V_trigger_f, Off_delay

Usage Rules: The [Submodel Spec] is to be used only with submodels.

The following subparameters are used:

V_trigger_r Rising edge trigger voltage

V_trigger_f Falling edge trigger voltage

Off_delay Turn-off delay from V_trigger_r or V_trigger_f

For each subparameter contained in the first column, the remaining three hold its typical, minimum

and maximum values. The entries of typical, minimum, and maximum be must be placed on a

single line and must be separated by at least one white space. All four columns are required under

the [Submodel Spec] keyword. However, data is required only in the typical column. If minimum

and/or maximum values are not available, the reserved word “NA” must be used to indicate the

typical value by default.

The values in the minimum and maximum columns usually correspond to the values in the same

columns for the inherited top-level voltage range or reference voltages in the top-level model. The

IBIS Version 6.0

79

V_trigger_r and V_trigger_f subparameters should hold values in the minimum and maximum

columns that correspond to the voltage range or reference voltages of the top-level model. The

Off_delay subparameter, however, is an exception to this rule because in some cases it may be

completely or partially independent from supply voltages and/or manufacturing process variations.

Therefore the minimum and maximum entries for the Off_delay subparameter should be ordered

simply by their magnitude.

Unless noted, each [Submodel Spec] subparameter is independent of any other subparameter.

V_trigger_r, V_trigger_f rules:

The voltage trigger values for the rising and falling edges provide the starting time when an action

is initiated.

Off_delay rules:

The functionality of the Off_delay subparameter is to provide an additional time related mechanism

to turn off circuit elements.

Example:

| Dynamic Clamp Example:

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_r 3.6 2.9 4.3 | Starts power pulse table

V_trigger_f 1.4 1.2 1.6 | Starts gnd pulse table

|

| Bus Hold Example:

|

[Submodel Spec]

| Subparameter typ min max

V_trigger_r 3.1 2.4 3.7 | Starts low to high

 | bus hold transition

V_trigger_f 1.8 1.6 2.0 | Starts high to low

 | bus hold transition

|

| Bus_hold application with pullup structure triggered on and then clocked

| off:

|

[Submodel Spec]

| Subparameter typ min max

V_trigger_r 3.1 2.4 3.7 | Low to high transition

 | triggers the turn on

 | process of the pullup

V_trigger_f -10.0 -10.0 -10.0 | Not used, so trigger

 | voltages are set out

 | of range

Off_delay 5n 4n 6n | Time from rising edge

 | trigger at which the

 | pullup turned off

Dynamic Clamp:

When the Submodel_type subparameter under the [Submodel] keyword is set to Dynamic_clamp,

the submodel describes the dynamic clamp functionality.

IBIS Version 6.0

80

The [GND Pulse Table] and [POWER Pulse Table] keywords are defined. An example for a

complete dynamic clamp model is provided below.

Keywords: [GND Pulse Table], [POWER Pulse Table]

Required: No

Description: Used to specify the offset voltage versus time of [GND Clamp] and [POWER

Clamp] tables within submodels.

Usage Rules: Each [GND Pulse Table] and [POWER Pulse Table] keyword introduces a table of

voltage vs. time points that describe the shape of an offset voltage from the [GND Clamp

Reference] voltage (or default ground) or the [POWER Clamp Reference] voltage (or default

[Voltage Range] voltage). Note that these voltage values are inherited from the top-level model.

The table itself consists of one column of time points, then three columns of voltage points in the

standard typ, min, and max format. The four entries must be placed on a single line and must be

separated by at least one white space. All four columns are required. However, data is only

required in the typical column. If minimum or maximum data is not available, use the reserved

word “NA”. Time values must increase as one parses down the table. The waveform table can

contain of maximum of 100 rows.

Each table must contain at least two entries. Thus, numerical values are required for the first and

last entries of any column containing numerical data.

The voltage entries in both the [Gnd Pulse Table] and [POWER Pulse Table] tables are directly

measured offsets. At each instance, the [Gnd Pulse Table] voltage is ADDED to the [GND Clamp]

table voltages to provide the shifted table voltages. At each instance, the [POWER Pulse Table]

voltage is SUBTRACTED (because of polarity conventions) from the [POWER Clamp] table

voltages to provide the shifted table voltages.

Only one [GND Pulse Table] and one [POWER Pulse Table] are allowed per model.

The [GND Pulse Table] and [POWER Pulse Table] interact with [Submodel Spec] subparameters

V_trigger_f and V_trigger_r. Several modes of operation exist based on whether a pulse table and

its corresponding trigger subparameter are given. These modes are classified as triggered and static.

Triggered Mode:

For triggered mode, a pulse table must exist and include the entire waveform; i.e., the first entry (or

entries) in a voltage column must be equal to the last entry.

Also, a corresponding [Submodel Spec] V_trigger_* subparameter must exist. The triggered

interaction is described:

The V_trigger_f subparameter under [Submodel Spec] is used to detect when the falling edge

waveform at the die passes the trigger voltage. At that time, the [Gnd Pulse Table] operation starts.

Similarly, the V_trigger_r subparameter is used to detect when the rising edge waveform at the die

passes the trigger voltage. At that time, [POWER Pulse Table] operation starts. The [GND Pulse

Table] dependency is shown in Figure 18.

IBIS Version 6.0

81

time
V_trigger_f

time

[GND Pulse Table]

[GND Pulse Table] operation starts at this time

Figure 18 – [GND Pulse Table] Waveforms at Die

The V_trigger_r and [POWER Pulse Table] operate in a similar manner. When the V_trigger_r

voltage value is reached on the rising edge, the [POWER Pulse Table] is started. Normally the

offset voltage entries in the [POWER Pulse Table] are negative.

Static Mode:

When the [GND Pulse Table] keyword does not exist, but the added model [GND Clamp] table

does exist, the added model [GND Clamp] is used directly. Similarly, when the [POWER Pulse

Table] keyword does not exist, but the added model [POWER Clamp] table does exist, the added

model [POWER Clamp] is used directly.

This mode provides additional fixed clamping to an I/O_* buffer or a 3-state buffer when it is used

as a driver.

Example:

| Dynamic_clamp Model with both dynamic GND and POWER clamps

|

[Submodel] Dynamic_Clamp_1

Submodel_type Dynamic_clamp

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_f 1.4 1.2 1.6 | Falling edge trigger

V_trigger_r 3.6 2.9 4.3 | Rising edge trigger

|

| typ min max

| [Voltage Range] 5.0 4.5 5.5

| Note, the actual voltage range and reference voltages are inherited from

| the top-level model.

|

[GND Pulse Table] | GND Clamp offset table

|

IBIS Version 6.0

82

| Time V(typ) V(min) V(max)

|

 0 0 0 0

 1e-9 0 0 0

 2e-9 0.9 0.8 1.0

 10e-9 0.9 0.8 1.0

 11e-9 0 0 0

|

[GND Clamp] | Table to be offset

|

| Voltage I(typ) I(min) I(max)

|

 -5.000 -3.300e+01 -3.000e+01 -3.500e+01

 -4.000 -2.300e+01 -2.200e+01 -2.400e+01

 -3.000 -1.300e+01 -1.200e+01 -1.400e+01

 -2.000 -3.000e+00 -2.300e+00 -3.700e+00

 -1.900 -2.100e+00 -1.500e+00 -2.800e+00

 -1.800 -1.300e+00 -8.600e-01 -1.900e+00

 -1.700 -6.800e-01 -4.000e-01 -1.100e+00

 -1.600 -2.800e-01 -1.800e-01 -5.100e-01

 -1.500 -1.200e-01 -9.800e-02 -1.800e-01

 -1.400 -7.500e-02 -7.100e-02 -8.300e-02

 -1.300 -5.750e-02 -5.700e-02 -5.900e-02

 -1.200 -4.600e-02 -4.650e-02 -4.550e-02

 -1.100 -3.550e-02 -3.700e-02 -3.450e-02

 -1.000 -2.650e-02 -2.850e-02 -2.500e-02

 -0.900 -1.850e-02 -2.100e-02 -1.650e-02

 -0.800 -1.200e-02 -1.400e-02 -9.750e-03

 -0.700 -6.700e-03 -8.800e-03 -4.700e-03

 -0.600 -3.000e-03 -4.650e-03 -1.600e-03

 -0.500 -9.450e-04 -1.950e-03 -3.650e-04

 -0.400 -5.700e-05 -2.700e-04 -5.550e-06

 -0.300 -1.200e-06 -1.200e-05 -5.500e-08

 -0.200 -3.000e-08 -5.000e-07 0.000e+00

 -0.100 0.000e+00 0.000e+00 0.000e+00

 0.000 0.000e+00 0.000e+00 0.000e+00

 5.000 0.000e+00 0.000e+00 0.000e+00

|

[POWER Pulse Table] | POWER Clamp offset table

|

| Time V(typ) V(min) V(max)

|

 0 0 0 0

 1e-9 0 0 0

 2e-9 -0.9 -1.0 -0.8

 10e-9 -0.9 -1.0 -0.8

 11e-9 0 0 0

|

 [POWER Clamp] | Table to be offset

|

| Voltage I(typ) I(min) I(max)

|

 -5.000 1.150e+01 1.100e+01 1.150e+01

 -4.000 7.800e+00 7.500e+00 8.150e+00

 -3.000 4.350e+00 4.100e+00 4.700e+00

 -2.000 1.100e+00 8.750e-01 1.300e+00

 -1.900 8.000e-01 6.050e-01 1.000e+00

IBIS Version 6.0

83

 -1.800 5.300e-01 3.700e-01 7.250e-01

 -1.700 2.900e-01 1.800e-01 4.500e-01

 -1.600 1.200e-01 6.850e-02 2.200e-01

 -1.500 3.650e-02 2.400e-02 6.900e-02

 -1.400 1.200e-02 1.100e-02 1.600e-02

 -1.300 6.300e-03 6.650e-03 6.100e-03

 -1.200 4.200e-03 4.750e-03 3.650e-03

 -1.100 2.900e-03 3.500e-03 2.350e-03

 -1.000 1.900e-03 2.450e-03 1.400e-03

 -0.900 1.150e-03 1.600e-03 7.100e-04

 -0.800 5.500e-04 9.150e-04 2.600e-04

 -0.700 1.200e-04 4.400e-04 5.600e-05

 -0.600 5.400e-05 1.550e-04 1.200e-05

 -0.500 1.350e-05 5.400e-05 1.300e-06

 -0.400 8.650e-07 7.450e-06 4.950e-08

 -0.300 6.250e-08 7.550e-07 0.000e+00

 -0.200 0.000e+00 8.400e-08 0.000e+00

 -0.100 0.000e+00 0.000e-08 0.000e+00

 0.000 0.000e+00 0.000e+00 0.000e+00

|

Bus Hold:

When the Submodel_type subparameter under the [Submodel] keyword is set to Bus_hold, the

added model describes the bus hold functionality. However, while described in terms of bus hold

functionality, active terminators can also be modeled.

Existing keywords and subparameters are used to describe bus hold models. The [Pullup] and

[Pulldown] tables both are used to define an internal buffer that is triggered to switch to its opposite

state. This switching transition is specified by a [Ramp] keyword or by the [Rising Waveform] and

[Falling Waveform] keywords. The usage rules for these keywords are the same as under the

[Model] keyword. In particular, at least either the [Pullup] or [Pulldown] keyword is required.

Also, the [Ramp] keyword is required, even if the [Rising Waveform] and [Falling Waveform]

tables exist. However, the voltage ranges and reference voltages are inherited from the top-level

model.

For bus hold submodels, the [Submodel Spec] keyword, V_trigger_r, and V_trigger_f are required.

The Off_delay subparameter is optional, and can only be used if the submodel consists of a pullup

or a pulldown structure only, and not both. Devices which have both pullup and pulldown

structures controlled in this fashion can be modeled using two submodels, one for each half of the

circuit.

The transition is triggered by action at the die using the [Submodel Spec] V_trigger_r and

V_trigger_f subparameters as described next. In all subsequent discussions, “low” means the

pulldown structure is on or active, and the pullup structure is off or inactive if either or both exist.

The opposite settings are referred to as “high”.

If the starting voltage is below V_trigger_f, then the bus hold model is set to the low state causing

additional pulldown current. If the starting voltage is above V_trigger_r, the bus hold model is set

to the high state for additional pullup current.

Under some unusual cases, the above conditions can be both met or not met at all. To resolve this,

the EDA tool should compute the starting voltage with the bus hold model set to low. If the

IBIS Version 6.0

84

starting voltage is equal to or less than the average of V_trigger_r and V_trigger_f, keep the bus

hold model in the low state. Otherwise, set the bus hold model to the high state.

When the input passes through V_trigger_f during a high-to-low transition at the die, the bus hold

output switches to the low state. Similarly, when the input passes though V_trigger_r during a low-

to-high transition at the die, the bus hold output switches to the high state.

If the bus hold submodel has a pullup structure only, V_trigger_r provides the time when its pullup

is turned on and V_trigger_f or Off_delay provides the time when it is turned off, whichever occurs

first. Similarly, if the submodel has a pulldown structure only, V_trigger_f provides the time when

its pulldown is turned on and V_trigger_r or Off_delay provides the time when it is turned off,

whichever occurs first. The required V_trigger_r and V_trigger_f voltage entries can be set to

values outside of the input signal range if the pullup or pulldown structures are to be held on until

the Off_delay turns them off.

The starting mode for each of the submodels which include the Off_delay subparameter of the

[Submodel Spec] keyword is the off state. Also, while two submodels provide the desired

operation, either of the submodels may exist without the other to simulate turning on and off only a

pullup or a pulldown current.

Table 4 through Table 7 summarizes the bus hold initializations and switching transitions:

Table 4 – Bus Hold without Off_Delay – Initialization

Initial Vdie Value Initial Bus Hold Submodel State

<= V_trigger_r & < V_trigger_f low

=> V_trigger_f & > V_trigger_r high

Recommendations if neither or both conditions above are satisfied

<= (V_trigger_f + V_trigger_r)/2 low

> (V_trigger_f + V_trigger_r)/2 high

Table 5 – Bus Hold without Off_Delay - Transitions

Prior Bus Hold Submodel

State

Vdie transition through V_trigger_r/f Bus Hold

Transition

Low V_trigger_r low-to-high

Low V_trigger_f no change

High V_trigger_r no change

High V_trigger_f high-to-low

IBIS Version 6.0

85

Table 6 – Bus Hold with Off_Delay (Requires Either [Pullup] or [Pulldown] Only) -

Initialization

[Pullup] or [Pulldown] Table Initial Bus Hold Submodel State (Off Mode)

[Pullup] low

[Pulldown] high

Table 7 – Bus Hold with Off_Delay (Requires Either [Pullup] or [Pulldown] Only) -

Transitions

Prior Bus Hold

Submodel State

Vdie transition

through

V_trigger_r/f

Bus Hold Transition Off_delay Transition

Low V_trigger_r low-to-high high-to-low

Low V_trigger_f no change no change

High V_trigger_r no change no change

High V_trigger_f high-to-low low-to-high

Note: if Vdie passes again through the V_trigger_r/f thresholds before the Off_delay time is

reached, the bus hold state follows the change documented in the first table, overriding the

Off_delay transition.

No additional keywords are needed for this functionality.

Examples:

| Complete Bus Hold Model Example:

|

[Submodel] Bus_hold_1

Submodel_type Bus_hold

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_f 1.3 1.2 1.4 | Falling edge trigger

V_trigger_r 3.1 2.6 4.6 | Rising edge trigger

|

| typ min max

| [Voltage Range] 5.0 4.5 5.5

| Note, the actual voltage range and reference voltages are inherited from

| the top-level model.

|

[Pulldown]

|

-5V -100uA -80uA -120uA

-1V -30uA -25uA -40uA

0V 0 0 0

IBIS Version 6.0

86

1V 30uA 25uA 40uA

3V 50uA 45uA 50uA

5V 100uA 80uA 120uA

10v 120uA 90uA 150uA

|

[Pullup]

|

-5V 100uA 80uA 120uA

-1V 30uA 25uA 40uA

0V 0 0 0

1V -30uA -25uA -40uA

3V -50uA -45uA -50uA

5V -100uA -80uA -120uA

10v -120uA -90uA -150uA

|

|---

|

[Ramp]

| typ min max

dV/dt_r 2.0/0.50n 2.0/0.75n 2.0/0.35n

dV/dt_f 2.0/0.50n 2.0/0.75n 2.0/0.35n

R_load = 500

|

|---

| Complete Pulldown Timed Latch Example:

|

[Submodel] Timed_pulldown_latch

Submodel_type Bus_hold

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_r 3.1 2.6 4.6 | Rising edge trigger

 | Values could be set out

 | of range to disable the

 | trigger

V_trigger_f 1.3 1.2 1.4 | Falling edge trigger

Off_delay 3n 2n 5n | Delay to turn off the

 | pulldown table

|

| Note that if the input signal goes above the V_trigger_r value, the

| pulldown structure will turn off even if the timer didn't expire yet.

|

| typ min max

| [Voltage Range] 5.0 4.5 5.5

| Note, the actual voltage range and reference voltages are inherited from

| the top-level model.

|

[Pulldown]

|

-5V -100uA -80uA -120uA

-1V -30uA -25uA -40uA

0V 0 0 0

1V 30uA 25uA 40uA

IBIS Version 6.0

87

3V 50uA 45uA 50uA

5V 100uA 80uA 120uA

10v 120uA 90uA 150uA

|

| [Pullup] table is omitted to signal Open_drain functionality.

|

|---

|

[Ramp]

| typ min max

dV/dt_r 2.0/0.50n 2.0/0.75n 2.0/0.35n

dV/dt_f 2.0/0.50n 2.0/0.75n 2.0/0.35n

R_load = 500

|

|===

|

Fall Back:

When the Submodel_type subparameter under the [Submodel] keyword is set to Fall_back, the

added model describes the fall back functionality. This submodel can be used to model drivers that

reduce their strengths and increase their output impedances during their transitions. The fall back

submodel is specified in a restrictive manner consistent with its intended use with a driver model

operating only in Driving mode. In a Non-Driving mode, no action is specified. For example, a

fall back submodel added to an Input or Terminator model would be inactive.

Existing keywords and subparameters are used to describe fall back models. However, only one

[Pullup] or [Pulldown] table, but not both, is allowed. The switching transition is specified by a

[Ramp] keyword or by the [Rising Waveform] and [Falling Waveform] keywords. The [Ramp]

keyword is required, even if the [Rising Waveform] and [Falling Waveform] tables exist. However,

the voltage ranges and reference voltages are inherited from the top-level model.

For fall back submodels, the [Submodel Spec] keyword, V_trigger_r, and V_trigger_f are required.

Unlike the bus hold model, the Off_delay subparameter is not permitted. Devices which have both

pullup and pulldown structures can be modeled using two submodels, one for the rising cycle and

one for the falling cycle.

In all following discussion, “low” means the pulldown structure is on or active, and the pullup

structure is off or inactive. The opposite settings are referred to as “high”.

The transition is triggered by action at the die using the [Submodel Spec] V_trigger_r and

V_trigger_f subparameters. The initialization and transitions are shown in Table 8 through Table

10.

Table 8 – Fall Back, Initial State

[Pullup] or [Pulldown] Table Initial Fall Back Submodel State (Off Mode)

[Pullup] low

[Pulldown] high

IBIS Version 6.0

88

Table 9 – Fall Back, Driver Rising Cycle

Prior State Vdie Rising Edge

Transition

Vdie > V_trigger_r

Transition

Low
<= V_trigger_r low-to-high high-to-low

> V_trigger_r stays low stays low

High
<= V_trigger_r stays high high-to-low

> V_trigger_r stays high stays high

Table 10 – Fall Back, Driver Falling Cycle

Prior State Vdie Falling Edge

Transition

Vdie < V_trigger_f

Transition

High
=> V_trigger_f high-to-low low-to-high

< V_trigger_f stays high stays high

Low
=> V_trigger_f stays low low-to-high

< V_trigger_f stays low stays low

One application is to configure the submodel with only a pullup structure. At the beginning of the

rising edge cycle, the pullup is turned on to the high state. When the die voltage passes V_trigger_r,

the pullup structure is turned off. Because only the pullup structure is used, the off state is low

corresponding to a high-Z state. During the falling transition, the pullup remains in the high-Z state

if the V_trigger_f is set out of range to avoid setting the submodel to the high state. So a temporary

boost in drive occurs only during the first part of the rising cycle.

A similar submodel consisting of only a pulldown structure could be constructed to provide added

drive strength only at the beginning of the falling cycle. The complete IBIS model would have

both submodels to give added drive strength for both the start of the rising and the start of the

falling cycles.

No additional keywords are needed for this functionality.

Examples:

| Complete Dynamic Output Model Example Using Two Submodels:

|

[Submodel] Dynamic_Output_r

Submodel_type Fall_back

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_f -10.0 -10.0 -10.0 | Falling edge trigger

 | set out of range to

 | disable trigger

IBIS Version 6.0

89

V_trigger_r 3.1 2.6 4.6 | Rising edge trigger

|

| typ min max

| [Voltage Range] 5.0 4.5 5.5

| Note, the actual voltage range and reference voltages are inherited from

| the top-level model.

|

[Pullup]

|

-5V 100mA 80mA 120mA

0V 0 0 0

10v -200mA -160mA -240mA

|

| [Pulldown] table is omitted to signify Open_source functionality.

|

|---

|

[Ramp]

| typ min max

dV/dt_r 1.5/0.50n 1.43/0.75n 1.58/0.35n

dV/dt_f 1.5/0.50n 1.43/0.75n 1.58/0.35n

R_load = 50

|

|---

[Submodel] Dynamic_Output_f

Submodel_type Fall_back

|

[Submodel Spec]

| Subparameter typ min max

|

V_trigger_r 10.0 10.0 10.0 | Rising edge trigger

 | set out of range to

 | disable trigger

V_trigger_f 1.3 1.2 1.4 | Falling edge trigger

|

| typ min max

| [Voltage Range] 5.0 4.5 5.5

| Note, the actual voltage range and reference voltages are inherited from

| the top-level model.

|

[Pulldown]

|

-5V -100mA -80mA -120mA

0V 0 0 0

10v 200mA 160mA 240mA

|

| [Pullup] table is omitted to signify Open_drain functionality.

|

|---

|

[Ramp]

| typ min max

dV/dt_r 1.5/0.50n 1.43/0.75n 1.58/0.35n

dV/dt_f 1.5/0.50n 1.43/0.75n 1.58/0.35n

R_load = 50

|

IBIS Version 6.0

90

6.3 MULTI-LINGUAL MODEL EXTENSIONS

INTRODUCTION

The SPICE, IBIS-ISS, VHDL-AMS and Verilog-AMS languages are supported by IBIS. This

chapter describes how models written in these languages can be referenced and used by .ibs files.

Table 11 shows the keywords used by the language extensions within the IBIS framework.

Table 11 – Language Extension Keywords

Keyword Description

[External Circuit]

[End External Circuit]

References enhanced descriptions of structures on the die,

including digital and/or analog, active and/or passive circuits

[External Model]

[End External Model]

Same as [External Circuit], except limited to the connection

format and usage of the [Model] keyword, with one additional

feature added: support for true differential buffers

[Node Declarations]

[End Node Declarations]

Lists on-die connection points related to the [Circuit Call]

keyword

[Circuit Call]

[End Circuit Call]

Instantiates [External Circuit]s and connects them to each

other and/or die pads

The placement of these keywords within the hierarchy of IBIS is shown below:

 ├── [Component]

 │ │

 │ ├── [Node Declarations]

 │ │ └── [End Node Declarations]

 │ │

 │ ├── [Circuit Call]

 │ │ └── [End Circuit Call]

 │ │

 │

 ├── [Model]

 │ │

 │ ├── [External Model]

 │ │ └── [End External Model]

 │

 ├── [External Circuit]

 │ └── [End External Circuit]

Languages Supported:

IBIS Version 6.0

91

.ibs files can reference other files which are written using the SPICE, IBIS-ISS, VHDL-AMS, or

Verilog-AMS languages. In this document, these languages are defined as follows:

“SPICE” refers to SPICE 3, Version 3F5 developed by the University of California at Berkeley,

California. Many vendor-specific EDA tools are compatible with most or all of this version.

"IBIS-ISS" refers to the "IBIS Interconnect SPICE Subcircuits Specification (IBIS-ISS)",

developed by the members of the IBIS Open Forum.

“VHDL-AMS” refers to “IEEE Standard VHDL Analog and Mixed-Signal Extensions”, approved

March 18, 1999 by the IEEE-SA Standards Board and designated IEEE Std. 1076.1-1999, or later.

“Verilog-AMS” refers to the Analog and Mixed-Signal Extensions to Verilog-HDL as documented

in the Verilog-AMS Language Reference, Version 2.0, or later. This document is maintained by

Accellera (formerly Open Verilog International), an independent organization. Verilog-AMS is a

superset that includes Verilog-A and the Verilog Hardware Description Language IEEE 1364-2001,

or later.

“VHDL-A(MS)” refers to the analog subset of VHDL-AMS described above.

“Verilog-A(MS)” refers to the analog subset of Verilog-AMS described above.

In addition, the “IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_logic_1164)”, designated IEEE Std. 1164-1993 or later, is required to promote common

digital data types for .ibs files referencing VHDL-AMS. Also, the Accellera Verilog-AMS

Language Reference Manual Version 2.2 or later, is required to promote common digital data types

for .ibs files referencing Verilog-AMS.

Note that, for the purposes of this section, keywords, subparameters and other data used without

reference to the external languages just described are referred to collectively as “native” IBIS.

Overview:

The four keyword pairs discussed in this chapter can be separated into two groups based on their

functionalities. The [External Model], [End External Model], [External Circuit], and [End External

Circuit] keywords are used as pointers to the models described by one of the external languages.

The [Node Declarations], [End Node Declarations], [Circuit Call], and [End Circuit Call] keywords

are used to describe how [External Circuit]s are connected to each other and/or to the die pads.

The [External Model] and [External Circuit] keywords are very similar in that they both support the

same external languages, and they can both be used to describe passive and/or active circuitry. The

key difference between the two keywords is that [External Model] can only be placed under the

[Model] keyword, while [External Circuit] can only be placed outside the [Model] keyword, as

illustrated in the portion of the keyword hierarchy, shown above.

The intent behind [External Model] is to provide an upgrade path from native IBIS [Model]s to the

external languages (one exception to this is the support for true differential buffers). Thus, the

[External Model] keyword can be used to replace the usual I-V and V-T tables, C_comp,

C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, C_comp_gnd_clamp subparameters,

[Ramp], [Driver Schedule], [Submodel] keywords, etc. of a [Model] by any modeling technique

that the external languages allow. For [External Model]s, the connectivity, test load and

specification parameters (such as Vinh and Vinl) are preserved from the [Model] keyword and the

simulator is expected to carry out the same type of connections and measurements as is usually

done with the [Model] keyword. The only difference is that the model itself is described by an

external language.

IBIS Version 6.0

92

In the case of the [External Circuit], however, one can model a circuit having any number of ports

(see definitions below). For example, the ports may include impedance or buffer strength selection

controls in addition to the usual signal and supply connections. The connectivity of an [External

Circuit] is defined by the [Node Declarations] and [Circuit Call] keywords. Currently, the test loads

and measurement parameters for an [External Circuit] can only be defined inside the model

description itself. The results of measurements can be reported to the user or tool via other means.

The [Circuit Call] keyword acts similarly to subcircuit calls in SPICE, instantiating the various

[External Circuit]s and connecting them together. Please note that models described by the

[External Model] keyword are connected according to the rules and assumptions of the [Model]

keyword. [Circuit Call] is not necessary for these cases and must not be used.

Definitions:

For the purposes of this document, several general terms are defined below.

circuit - any arbitrary collection of active or passive electrical elements treated as a unit

node - any electrical connection point; also called die node (may be digital or analog; may be a

connection internal to a circuit or between circuits)

pad - a special case of a node. A pad connects a buffer or other circuitry to a package; also

called die pad.

port - access point in an [External Model] or [External Circuit] definition for digital or analog

signals

pseudo-differential circuits - combination of two single-ended circuits which drive and/or

receive complementary signals, but where no internal current relationship exists between them

true differential circuits - circuits where a current relationship exists between two outputs or

inputs which drive or receive complementary signals

General Assumptions:

Ports under [Model]s:

The use of ports under native IBIS must be understood before the multi-lingual extensions can be

correctly applied. The [Model] keyword assumes, but does not explicitly require, naming ports on

circuits. These ports are automatically connected by IBIS-compliant tools without action by the

user. For example, the [Voltage Reference] keyword implies the existence of power supply rails

which are connected to the power supply ports of the circuit described by the [Model] keyword.

For multi-lingual modeling, ports must be explicitly named in the [External Model] or [External

Circuit]; the ports are no longer assumed by EDA tools. To preserve compatibility with the

assumptions of [Model], a list of pre-defined port names has been created where the ports are

reserved with fixed functionality. These reserved ports are defined in Table 12.

Table 12 – Port Names in Multi-Lingual Modeling

Port Name Description

1 D_drive Digital input to a model unit

2 D_enable Digital enable for a model unit

IBIS Version 6.0

93

Port Name Description

3 D_receive Digital receive port of a model unit, based on data on A_signal (and/or

A_signal_pos and A_signal_neg)

4 A_puref Voltage reference port for pullup structure

5 A_pcref Voltage reference port for power clamp structure

6 A_pdref Voltage reference port for pulldown structure

7 A_gcref Voltage reference port for ground clamp structure

8 A_signal I/O signal port for a model unit

9 A_extref External reference voltage port

10 D_switch Digital input for control of a series switch model

11 A_gnd Global reference voltage port

12 A_pos Non-inverting port for series or series switch models

13 A_neg Inverting port for series or series switch models

14 A_signal_pos Non-inverting port of a differential model

15 A_signal_neg Inverting port of a differential model

The first letter of the port name designates it as either digital (“D”) or analog (“A”). Reserved ports

1 through 13 are assumed or implied under the native IBIS [Model] keyword. Again, for multi-

lingual models, these ports must be explicitly assigned by the user in the model if their functions

are to be used. A_gnd is a universal reference node, similar to SPICE ideal node “0.” Ports 14 and

15 are only available under [External Model] for support of true differential buffers.

Under the [Model] description, power and ground reference ports are created and connected by

IBIS-compliant tools as defined by the [Power Clamp Reference], [GND Clamp Reference],

[Pullup Reference], [Pulldown Reference] and/or [Voltage Range] keywords. The A_signal port is

connected to the die pad, to drive or receive an analog signal.

Ports under [External Model]s:

The [External Model] keyword may only appear under the [Model] keyword and it may only use

the same ports as assumed with the native IBIS [Model] keyword. However, [External Model]

requires that reserved ports be explicitly declared in the referenced language(s); tools will continue

to assume the connections to these ports.

For [External Model], reserved analog ports are usually assumed to be die pads. These ports would

be connected to the component pins through [Package Model]s or [Pin] parasitics. Digital ports

under [External Model] would connect to other internal digital circuitry.

IBIS Version 6.0

94

Two standard [Model] structures—an I/O buffer and a Series Switch—are shown, with their

associated port names, in Figure 19 and Figure 20.

D_enable

D_drive

D_receive

A_puref
A_pcref
A_signal
A_gcref
A_pdref
A_gnd
A_extref

Figure 19 - Port Names for I/O Buffer

D_switch

A_pos

A_neg

Figure 20 - Port Names for Series Switch

Ports under [External Circuit]s:

The [External Circuit] keyword allows the user to define any number of ports and port functions on

a circuit. The [Circuit Call] keyword instantiates [External Circuit]s and connects their ports to

specific die nodes (this can include pads). In this way, the ports of an [External Circuit] declaration

become specific component die nodes. Note that, if reserved digital port names are used with an

[External Circuit], those ports will be connected automatically as defined in the port list above

(under [External Circuit], reserved analog port names do not retain particular meanings).

Figure 21 illustrates the use of [External Circuit]. Buffer A is an instance of [External Circuit] “X”.

Similarly, Buffer B is an instance of [External Circuit] “Z”. These instances are created through

[Circuit Call]s. [External Circuit] “Y” defines an on-die interconnect circuit. Nodes “a” through “e”

and nodes “f” through “j” are specific instances of the ports defined for [External Circuit]s “X” and

“Z”. These ports become the internal nodes of the die and must be explicitly declared with the

[Node Declarations] keyword. The “On-die Interconnect” [Circuit Call] creates an instance of the

[External Circuit] “Y” and connects the instance with the appropriate power, signal, and ground die

pads. The “A” and “B” [Circuit Call]s connect the individual ports of each buffer instance to the

“On-die Interconnect” [Circuit Call].

Note that the “Analog Buffer Control” signal is connected directly to the pad for pin 3. This

connection is also made through an entry under the [Circuit Call] keyword.

IBIS Version 6.0

95

vcc

io1

gnd

Buffers and interconnect instantiated and
internal nodes connected through [Circuit Call]

On-die
Interconnect

[External Circuit] X [External Circuit] Y

10 Vcc

1 I/O pad A

11 GND

vcca1
vcca2
int_ioa
vssa1
vssa2

vccb1
vccb2
int_iob
vssb1
vssb2

f
g
h
i
j

[External Circuit] Z

io2 2 I/O pad B

Die Pads
(map to pins through
package)

3 Control Resistor
 or Voltage

Analog Buffer Control

A a
b
c
d
e

B

Figure 21 - Example Showing [External Circuit] Ports

The [Model], [External Model] and [External Circuit] keywords (with [Circuit Call]s and [Node

Declarations] as appropriate) may be combined together in the same .ibs file or even within the

same [Component] description.

Port types and states:

The intent of native IBIS is to model the circuit block between the region where analog signals are

of interest, and the digital logic domain internal to the component. For the purposes of this

discussion, the IBIS circuit block is called a “model unit” in Figure 22 and Figure 23 and the

document text below.

The multi-lingual modeling extensions maintain and expand this approach, assuming that both

digital signals and/or analog signals can move to and from the model unit. All VHDL-AMS and

Verilog-AMS models, therefore, must have digital ports and analog ports. In certain cases, digital

ports may not be required, as in the case of interconnects; see [External Circuit] below. Routines to

convert signals from one format to the other are the responsibility of the model author.

Digital ports under AMS languages must follow certain constraints on type and state. In VHDL-

AMS models, analog ports must have type “electrical”. Digital ports must have type “std_logic” as

defined in IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_logic_1164), or later. In Verilog-AMS models, analog ports must be of discipline “electrical”

or a subdiscipline thereof. Digital ports must be of discipline “logic” as defined in the Accellera

Verilog-AMS Language Reference Manual Version 2.2, or later and be constrained to states as

defined in IEEE Std. 1164-1993, or later.

IBIS Version 6.0

96

The digital ports delivering signals to the AMS model, D_drive, D_enable, and D_switch, must be

limited to the ‘1’ or ‘0’ states for VHDL-AMS, or, equivalently, to the 1 or 0 states for Verilog-

AMS. The D_receive digital port may only have the ‘1’, ‘0’, or ‘X’ states in VHDL-AMS, or,

equivalently, the 1, 0, or X states in Verilog-AMS. All digital ports other than the foregoing

predefined ports may use any of the logic states allowed by IEEE Std. 1164-1993, or later.

SPICE, IBIS-ISS, VHDL-A(MS), Verilog-A(MS) versus VHDL-AMS and VERILOG-AMS:

SPICE, IBIS-ISS, VHDL-A(MS), Verilog-A(MS) cannot process digital signals. All SPICE, IBIS-

ISS, VHDL-A(MS), Verilog-A(MS) input and output signals must be in analog format.

Consequently, IBIS multi-lingual models using SPICE, IBIS-ISS, VHDL-A(MS) or Verilog-A(MS)

require analog-to-digital (A_to_D) and/or digital-to-analog (D_to_A) converters to be provided by

the EDA tool. The converter subparameters are declared by the user, as part of the [External Model]

or [External Circuit] syntax, with user-defined names for the ports which connect the converters to

the analog ports of the SPICE, IBIS-ISS, VHDL-A(MS), or Verilog-A(MS) model. The details

behind these declarations are explained in the keyword definitions below.

The electrical output characteristics of D_to_A converters are equivalent to ideal voltage sources

having a zero ohm output impedance, and the electrical input characteristics of A_to_D converters

are equivalent to ideal voltage probes, having an infinite input impedance.

To summarize, Verilog-AMS and VHDL-AMS contain all the capability needed to ensure that a

model unit consists of only digital ports and/or analog ports. SPICE, IBIS-ISS, VHDL-A(MS) and

Verilog-A(MS), however, need extra data conversion, provided by the EDA tool, to ensure that any

digital signals can be correctly processed.

D_receive

D_drive

D_enable

Model Unit consists only of AMS code
(A_gnd and A_extref are not shown)

 "Model Unit"
 AMS code
D_to_A and A_to_D
 conversions
 provided by
 model author

A_puref
A_pdref
A_signal
A_pcref
A_gcref

Figure 22 - AMS Model Unit, Using an I/O Buffer as an Example

IBIS Version 6.0

97

D_receive

D_drive

D_enable

Model Unit consists of SPICE, VHDL-A(MS), Verilog-A(MS) code plus
A_to_D and D_to_A converters

(references for D_to_A and A_to_D converters not shown)

"Model Unit"

A_puref

A_pdref

A_signal

A_pcref

A_gcref

A_to_D

D_to_A

D_to_A

(analog receive ports)

(analog drive ports)

(analog enable ports)

A pure
analog
 I/O
buffer
model

Figure 23 - An Analog-Only Model Unit, Using an I/O Buffer as an Example

KEYWORD DEFINITIONS

Keywords: [External Model], [End External Model]

Required: No

Description: Used to reference an external file written in one of the supported languages

containing an arbitrary circuit definition, but having ports that are compatible with the [Model]

keyword, or having ports that are compatible with the [Model] keyword plus an additional signal

port for true differential buffers.

Sub-Params: Language, Corner, Parameters, Converter_Parameters, Ports, D_to_A, A_to_D

Usage Rules: The [External Model] keyword must be positioned within a [Model] section and it

may only appear once for each [Model] keyword in a .ibs file. It is not permitted under the

[Submodel] keyword.

[Circuit Call] may not be used to connect an [External Model].

A native IBIS [Model]’s data may be incomplete if the [Model] correctly references an [External

Model]. Any native IBIS keywords that are used in such a case must contain syntactically correct

data and subparameters according to native IBIS rules. In all cases, [Model]s which reference

[External Model]s must include the following keywords and subparameters:

Model_type

Vinh, Vinl (as appropriate to Model_type)

[Voltage Range] and/or [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference],

[GND Clamp Reference], [External Reference]

[Ramp]

In models without the [External Model] keyword, data for [Ramp] should be measured using a load

that conforms to the recommendations in Section 9, "NOTES ON DATA DERIVATION

METHOD". However, when used within the scope of [External Model], the [Ramp] keyword is

intended strictly to provide EDA tools with a quick first-order estimate of driver switching

characteristics. When using [External Model], therefore, data for [Ramp] may be measured using a

different load, if it results in data that better represent the driver’s behavior in standard operation.

IBIS Version 6.0

98

Also in this case, the R_load subparameter is optional, regardless of its value, and will be ignored

by EDA simulators. For example, the 20% to 80% voltage and time intervals for a differential

buffer may be measured using the typical differential operating load appropriate to that buffer’s

technology. Note that voltage and time intervals must always be recorded explicitly rather than as

a reduced fraction, in accordance with [Ramp] usage rules.

The following keywords and subparameters may be omitted, regardless of Model_type, from a

[Model] using [External Model]:

C_comp, C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, C_comp_gnd_clamp

[Pulldown], [Pullup], [POWER Clamp], [GND Clamp]

Subparameter Definitions:

Language:

Accepts “SPICE”, “IBIS-ISS”, “VHDL-AMS”, “Verilog-AMS”, “VHDL-A(MS)” or “Verilog-

A(MS)” as arguments. The Language subparameter is required and must appear only once.

Corner:

Three entries follow the Corner subparameter on each line:

corner_name file_name circuit_name

The corner_name entry is “Typ”, “Min”, or “Max”. The file_name entry points to the referenced

file in the same directory as the .ibs file.

Up to three Corner lines are permitted. A “Typ” line is required. If “Min” and/or “Max” data is

missing, the tool may use “Typ” data in its place. However, the tool should notify the user of this

action.

Models instantiated by corner_name "Min" describe slow, weak performance, and models

instantiated by corner_name "Max" describe fast, strong performance.

The circuit_name entry provides the name of the circuit to be simulated within the referenced file.

For SPICE and IBIS-ISS files, this is normally a “.subckt” name. For VHDL-AMS files, this is

normally an “entity(architecture)” name pair. For Verilog-AMS files, this is normally a “module”

name.

No character limits, case-sensitivity limits or extension conventions are required or enforced for

file_name and circuit_name entries. However, the total number of characters in each Corner line

must comply with the rules in Section 3. Furthermore, lower-case file_name entries are

recommended to avoid possible conflicts with file naming conventions under different operating

systems. Case differences between otherwise identical file_name entries or circuit_name entries

should be avoided. External languages may not support case-sensitive distinctions.

Parameters:

Lists names of parameters that can be passed into an external model file. Each Parameters entry

must match a name or keyword in the external file or language. The list of Parameters may span

several lines by using the word Parameters at the start of each line. The Parameters subparameter

is optional, and the external model must operate with default settings without any Parameters

assignments.

Parameter passing is not supported in SPICE. VHDL-AMS and VHDL-A(MS) parameters are

supported using “generic” names, and Verilog-AMS and Verilog-A(MS) parameters are supported

IBIS Version 6.0

99

using “parameter” names. IBIS-ISS parameters are supported for all IBIS-ISS parameters which

are defined on the subcircuit definition line.

Parameters are locally scoped under each [External Model] keyword, i.e., the same parameter under

two different [External Model] will have independent values.

The parameter(s) listed under the Parameters subparameter may optionally be followed by an equal

sign and a numeric, Boolean or string literal or a reference to a parameter name which is located in

a parameter tree. The reference must begin with a file name, followed by an open parentheses and

a the tree root name, a new open parentheses for any branch names (including the

Reserved_Parameters or Model_Specific branch names if present in the tree) and the parameter

name, and a matching set of closing parentheses. The file reference may point to any file which

contains one or more parameter trees. The files referenced must be located in the same directory as

the .ibs file containing the reference. The file names of parameter files must follow the rules for

file names given in Section 3, “GENERAL SYNTAX RULES AND GUIDELINES”. Parameter

files may only contain parameter trees using the tree syntax described in IBIS in Section 10.3 with

the following exceptions and additions:

When the extension of the external parameter’s file name ends with “.ami”:

a) only Usage In or Usage Info are allowed for parameters which are to be passed into

models instantiated by the [External Model] or the [External Circuit] keywords

When the extension of the external parameter’s file name does not end with “.ami”:

a) the parameter tree must not contain the Reserved_Parameters branch but must

contain the Model_Specific branch

b) only Usage Info is allowed

Note that in the case when a parameter is located in an .ami file and it is of Usage In, the parameter

value will be passed into the AMI executable model but this does not mean that the same parameter

couldn’t be used by other model(s) which are instantiated through [External Model] or [External

Circuit].

Multiple parameters may only be listed on a single line if no value assignments are made. When

the Parameters line includes a parameter value assignment, each parameter must be listed on a new

line. String literals must be enclosed in double quotes.

The EDA tool may provide additional means to the user to assign values to Parameters. This may

include the option to override the values provided in the .ibs file, to allow the user to make

selections for multi-valued parameters in the parameter tree, or to provide values for uninitialized

Parameters.

Converter_Parameters:

This optional subparameter lists and initializes parameter names to be used as arguments for the

A_to_D and/or D_to_A converter(s) of the [External Model] keyword under which it appears. The

list of Converter_Parameters may span several lines by using the word Converter_Parameters at the

start of each line. Any A_to_D or D_to_A argument which is entered as a parameter must be

declared and initialized with the Converter_Parameters subparameter.

Converter_Parameters are locally scoped under each [External Model] keyword, i.e., the same

converter parameter under two different [External Model]s will have independent values.

IBIS Version 6.0

100

The Converter_Parameters subparameter must contain one parameter name per line, which must be

followed by an equal sign and a constant numeric literal or a reference to a parameter name which

is located in a parameter tree. The reference must begin with a file name, followed by an open

parentheses and a the tree root name, a new open parentheses for any branch names (including the

Reserved_Parameters or Model_Specific branch names if present in the tree) and the parameter

name, and a matching set of closing parentheses. The file reference may point to any file which

contains one or more parameter trees. The files referenced must be located in the same directory as

the .ibs file containing the reference. The file names of parameter files must follow the rules for

file names given in Section 3, “GENERAL SYNTAX RULES AND GUIDELINES”. Parameter

files may only contain parameter trees using the tree syntax described in IBIS in Section 10.3 with

the following exceptions and additions:

When the extension of the external parameter’s file name ends with “.ami”:

a) only Usage In or Usage Info are allowed for parameters which are to be passed into

models instantiated by the [External Model] or the [External Circuit] keywords

When the extension of the external parameter’s file name does not end with “.ami”:

a) the parameter tree must not contain the Reserved_Parameters branch but must

contain the Model_Specific branch

b) only Usage Info is allowed

Note that in the case when a parameter is located in an .ami file and it is of Usage In, the parameter

value will be passed into the AMI executable model but this does not mean that the same parameter

couldn’t be used by other model(s) which are instantiated through [External Model] or [External

Circuit].

The EDA tool may provide additional means to the user to make assignments to

Converter_Parameters. This may include the option to override the values provided in the .ibs file,

or to allow the user to make selections for multi-valued parameters in the parameter tree.

Ports:

Ports are interfaces to the [External Model] which are available to the user and tool at the IBIS

level. They are used to connect the [External Model] to die pads. The Ports parameter is used to

identify the ports of the [External Model] to the simulation tool. The port assignment is by position

and the port names do not have to match exactly the names inside the external file. The list of port

names may span several lines if the word Ports is used at the start of each line.

Model units under [External Model] may only use reserved ports. The reserved, pre-defined port

names are listed in the General Assumptions heading above. As noted earlier, digital and analog

reserved port functions will be assumed by the tool and connections made accordingly. All the

ports appropriate to the particular Model_type subparameter entry must be explicitly listed (see

below). Note that the user may connect SPICE, IBIS-ISS, Verilog-A(MS) and VHDL-A(MS)

models to A_to_D and D_to_A converters using custom names for analog ports within the model

unit, as long as the digital ports of the converters use the digital reserved port names.

The rules for pad connections with [External Model] are identical to those for [Model]. The [Pin

Mapping] keyword may be used with [External Model]s but is not required. If used, the [External

Model] specific voltage supply ports—A_puref, A_pdref, A_gcref, A_pcref, and A_extref—are

connected as defined under the [Pin Mapping] keyword. In all cases, the voltage levels connected

on the reserved supply ports are defined by the [Power Clamp Reference], [GND Clamp Reference],

IBIS Version 6.0

101

[Pullup Reference], [Pulldown Reference], and/or [Voltage Range] keywords, as in the case of

[Model].

Digital-to-Analog/Analog-to-Digital Conversions:

These subparameters define all digital-to-analog and analog-to-digital converters needed to

properly connect digital signals with the analog ports of referenced external SPICE, IBIS-ISS,

Verilog-A(MS) or VHDL-A(MS) models. These subparameters must be used when [External

Model] references a file written in the SPICE, IBIS-ISS, Verilog-A(MS), or VHDL-A(MS)

languages. They are not permitted with Verilog-AMS or VHDL-AMS external files.

D_to_A:

As assumed in [Model], some interface ports of [External Model] circuits expect digital input

signals. As SPICE, IBIS-ISS, Verilog-A(MS), or VHDL-A(MS) models understand only analog

signals, some conversion from digital to analog format is required. For example, input logical

states such as “0” or “1”, implied in [Model], must be converted to actual input voltage stimuli,

such as a voltage ramp, for SPICE simulation.

The D_to_A subparameter provides information for converting a digital stimulus, such as “0” or

“1”, into an analog voltage ramp (a digital “X” input is ignored by D_to_A converters). Each

digital port which carries data for conversion to analog format must have its own D_to_A line.

The D_to_A subparameter is followed by eight or optionally nine arguments:

d_port port1 port2 vlow vhigh trise tfall corner_name polarity

The d_port entry holds the name of the digital port. This entry is used for the reserved port names

D_drive, D_enable, and D_switch. The port1 and port2 entries hold the SPICE, IBIS-ISS, Verilog-

A(MS) or VHDL-A(MS) analog input port names across which voltages are specified. These

entries are used for the user-defined port names, together with another port name, used as a

reference.

Normally port1 accepts an input signal and port2 is the reference for port1. However, for an

opposite polarity stimulus, port1 could be connected to a reference port and port2 could serve as

the input. In some situations, such as in the case of a true differential buffer model, it might be

desirable to provide two D_to_A converters, one to drive the Non-Inverting input and the other one

to drive the Inverting input. In this case the D_to_A converters may be defined with the polarity

argument, one with the value Non-Inverting and the other with the value Inverting.

The vlow and vhigh entries accept analog voltage values which must correspond to the digital off

and on states, where the vhigh value must be greater than the vlow value. When polarity is Non-

Inverting, vlow corresponds to the digital off state '0', vhigh corresponds to the digital on state '1',

trise corresponds to the analog edge rate going from the digital off to on state, and tfall corresponds

to the analog edge rate going from the digital on to off state. When polarity is Inverting, the analog

behavior corresponds to the opposite digital states. For example, a 3.3 V ground-referenced buffer

would list vlow as 0 V and vhigh as 3.3 V. For a Non-Inverting D_to_A converter, a rising edge in

D_drive would result in a transition from 0 V to 3.3 V, and for an Inverting D_to_A converter, a

rising edge in D_drive would result in a transition from 3.3 V to 0 V. The trise and tfall entries are

times, must be positive, and define input ramp rise and fall times between 0 and 100 percent.

The vlow, vhigh, trise and tfall arguments may be defined by parameter names, which must be

declared and initialized by one or more Converter_Parameters subparameter.

IBIS Version 6.0

102

The corner_name entry holds the name of the external model corner being referenced, as listed

under the Corner subparameter.

The last argument, polarity, is optional. If present, its value must be "Inverting" or "Non-Inverting".

If the argument is not present, "Non-Inverting" is in effect. The polarity argument may only be

used with D_to_A converters which are connected to the d_port name D_drive. If the polarity

argument is used, two D_to_A converter lines are required, one defined as Non-Inverting and

another defined as Inverting.

At least one D_to_A line must be present, corresponding to the “Typ” corner model, for each

digital line to be converted. Additional D_to_A lines for other corners may be omitted. In this case,

the typical corner D_to_A entries will apply to all model corners and the “Typ” corner_name entry

may be omitted if the polarity argument is not present. When the polarity argument is present, the

corner_name argument must also be present.

A_to_D:

The A_to_D subparameter is used to generate a digital state (“0”, “1”, or “X”) based on analog

voltages generated by the SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) model or analog

voltages present at the pad/pin. This allows an analog signal from the external SPICE, IBIS-ISS,

Verilog-A(MS) or VHDL-A(MS) circuit or pad/pin to be read as a digital signal by the simulation

tool.

The A_to_D subparameter is followed by six arguments:

d_port port1 port2 vlow vhigh corner_name

The d_port entry lists the reserved port name D_receive. As with D_to_A, the port1 entry would

normally contain the reserved name A_signal (see below) or a user-defined port name, while port2

may list any other analog reserved port name, used as a reference. The voltage measurements are

taken in this example from the port1 entry with respect to the port2 entry. These ports must also be

named by the Ports subparameter.

The vlow and vhigh entries list the low and high analog threshold voltage values. The reported

digital state on D_receive will be “0” if the measured voltage is lower than the vlow value, “1” if

above the vhigh value, and “X” otherwise.

The vlow and vhigh arguments may be defined by parameter names, which must be declared and

initialized by one or more Converter_Parameters subparameter.

The corner_name entry holds the name of the external model corner being referenced, as listed

under the Corner subparameter.

At least one A_to_D line must be supplied corresponding to the “Typ” corner model. Other

A_to_D lines for other corners may be omitted. In this case, the typical corner A_to_D entries will

apply to all model corners.

IMPORTANT: measurements for receivers in IBIS are normally assumed to be conducted at the

die pads/pins. In such cases, the electrical input model data comprises a “load” which affects the

waveform seen at the pads. However, for models measure the analog input response at the die pads

or inside the circuit (this does not preclude tools from reporting digital D_receive and/or analog

port responses in addition to at-pad A_signal response). If at-pad measurements are desired, the

A_signal port would be named in the A_to_D line under port1. The A_to_D converter then

effectively acts “in parallel” with the load of the circuit. If internal measurements are desired (e.g.,

if the user wishes to view the signal after processing by the receiver), the user-defined signal port

IBIS Version 6.0

103

would be named in the A_to_D line under port1. The A_to_D converter is effectively “in series”

with the receiver model. The vhigh and vlow parameters should be adjusted as appropriate to the

measurement point of interest.

Note that, while the port assignments and SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

model must be provided by the user, the D_to_A and A_to_D converters will be provided

automatically by the tool (the converter parameters must still be declared by the user). There is no

need for the user to develop external SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) code

specifically for these functions.

A conceptual diagram of the port connections of a SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-

A(MS) [External Model] is shown in Figure 24. The example illustrates an I/O buffer. Note that

the drawing implies that the D_receive state changes in response to the analog signal my_receive,

not A_signal:

D_receive

my_drive

my_ref

A_puref

A_pdref

A_pcref

A_gcref

A_signal

A_extref
A_to_D

D_to_A

D_to_A

A_gnd

D_drive

D_enable
my_enable

A_gcref

my_receive

my_ref

 [External
 Model]
 using
 SPICE,
Verilog-A(MS),
 or
 VHDL-A(MS)

Figure 24 - Example of an [External Model] I/O Buffer Using SPICE,

Verilog-A(MS), or VHDL-A(MS)

Pseudo-Differential Buffers:

Pseudo-differential buffers may be described using a pair of [External Model]s which may or may

not be identical. Each of the analog I/O signal ports (usually A_signal) is connected to a specific

pad through the [Pin] list in the usual fashion, and the two ports are linked together as a differential

pair through the [Diff Pin] keyword.

The reserved signal name A_signal is required for the I/O signal ports of [External Model]s

connected to pads used in a pseudo-differential configuration.

Users should note that, in pseudo-differential buffers, only one formal signal port is used to

stimulate the two [External Model] digital inputs (D_drive). One of these inputs will reflect the

timing and polarity of the formal signal port named by the user, while the other input is inverted

and (potentially) delayed with respect to the formal port as defined under the [Diff Pin] keyword.

IBIS Version 6.0

104

THIS SECOND PORT IS AUTOMATICALLY CREATED BY THE SIMULATION TOOL.

Users do not have to create special structures to invert or delay the driven digital signal.

Simulation tools will correctly implement the two input ports once the [Diff Pin] keyword has been

detected in the .ibs file. This approach is identical to that used in native IBIS.

The D_to_A adapters used for SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) files can be set

up to control ports on pseudo-differential buffers. If SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-

A(MS) is used as an external language, the [Diff Pin] vdiff subparameter overrides the contents of

vlow and vhigh under A_to_D.

IMPORTANT: For pseudo-differential buffers under [External Model], the analog input response

may only be measured at the die pads. The [Diff Pin] parameter is required, and controls both the

polarity and the differential thresholds used to determine the D_receive port response (the

D_receive port will follow the state of the non-inverting pin/pad as referenced to the inverting

pin/pad). For SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) models, the A_to_D line must

name the A_signal port under either port1 or port2, as with a single-ended buffer. The A_to_D

converter then effectively acts “in parallel” with the load of the buffer circuit. The vhigh and vlow

parameters will be overridden by the [Diff Pin] vdiff declarations.

The port relationships are shown in Figure 25.

IBIS Version 6.0

105

D_receive**
(ignored)

my_drive

my_ref

A_puref
A_pcref
A_gnd
A_pdref
A_extref
A_gcref

A_to_D

D_to_A

D_to_AD_drive

D_enable***

my_enable

A_pcref

my_drive*

my_ref

 * This signal is automatically created, by inverting and
delaying D_drive based on the information in [Diff Pin].

 ** Pseudo-differential buffers must have A_to_D entries,
but D_receive is determined by the state of A_signal
(Inverting) and A_signal (Non-inverting) according to the
[Diff Pin] declaration.

*** D_enable is shared between the separate buffers. This
sharing is handled by the EDA tool.

A_to_D

D_to_AD_enable***

D_receive**
(ignored) my_ref

my_enable

A_pcref

A_puref
A_pdref
A_pcref
A_gnd
A_extref
A_gcref

 A_signal
(Non-inverting)

 A_signal
(Inverting)

Figure 25 -Example SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) Implementation

Figure 26 illustrates the same concepts with a *-AMS model. Note that the state of D_receive is

determined by the tool automatically by observing the A_signal ports. The outputs of the actual

receiver circuits in the *-AMS models are not used for determining D_receive.

IBIS Version 6.0

106

D_receive**
(ignored)

A_puref
A_pcref
A_gnd
A_gcref
A_pdref
A_signal (Non-inverting)

D_drive

D_enable***

 * This signal is automatically created, by inverting and
delaying D_drive based on the information in [Diff Pin]
(digital output will be based on evaluation of signals %%
and && also using [Diff Pin]).

 ** D_receive for pseudo-differential buffers is determined by
the state of A_signal (Inverting) and A_signal
(Non-inverting) according to the [Diff Pin] declaration.

*** D_enable is shared between the separate buffers. This
sharing is handled by the EDA tool.

D_enable***

D_receive**
(ignored)

A_puref
A_pcref
A_signal (Inverting)
A_gcref
A_pdref
A_gnd

(D_drive*)

Figure 26 - Example *-AMS Implementation

IBIS Version 6.0

107

Two additional differential timing test loads are available:

Rref_diff, Cref_diff

These subparameters are also available under the [Model Spec] keyword for typical, minimum, and

maximum corners.

These timing test loads require both sides of the differential model to be operated. They can be

used with the existing timing test loads Rref, Cref, and Vref. The existing timing test loads and

Vmeas are used if Rref_diff and Cref_diff are NOT given.

True Differential Models:

True differential buffers may be described using [External Model]. In a true differential [External

Model], the differential I/O ports which connect to die pads use the reserved names A_signal_pos

and A_signal_neg, as shown in Figure 27.

D_receive

Figure 10: Port names for true differential I/O buffer

D_drive

D_enable A_puref
A_pcref
A_signal_pos
A_signal_neg
A_gcref
A_pdref

A_gnd
A_extref

Figure 27 - Port Names for True Differential I/O Buffer

IMPORTANT: All true differential models under [External Model] assume single-ended digital

port connections (D_drive, D_enable, D_receive).

The [Diff Pin] keyword is still required within the same [Component] definition when [External

Model] describes a true differential buffer. The [Model] names or [Model Selector] names

referenced by the pair of pins listed in an entry of the [Diff Pin] MUST be the same.

The D_to_A or A_to_D adapters used for SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) files

may be set up to control or respond to true differential ports. An example is shown in Figure 28.

IBIS Version 6.0

108

my_drive

my_ref

A_to_D

D_to_A

D_to_A

my_enable

my_ref

D_receive

D_drive

D_enable
A_puref

A_pcref

A_signal_pos
A_signal_neg

A_gcref

A_pdref

A_gnd
A_extref

Figure 28 - Example SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) Implementation

of a True Differential Buffer

If at-pad or at-pin measurement using a SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

[External Model] is desired, the vlow and vhigh entries under the A_to_D subparameter must be

consistent with the values of the [Diff Pin] vdiff subparameter entry (the vlow value must match -

vdiff, and the vhigh value must match +vdiff). The logic states produced by the A_to_D

conversion follow the same rules as for single-ended buffers, listed above. An example is shown at

the end of this section.

IMPORTANT: For true-differential buffers under [External Model], the user can choose whether to

measure the analog input response at the die pads or internal to the circuit (this does not preclude

tools from reporting digital D_receive and/or analog responses in addition to at-pad A_signal

response). If at-pad measurements for a SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

model are desired, the A_signal_pos port would be named in the A_to_D line under port1 and

A_signal_neg under port2. The A_to_D converter then effectively acts “in parallel” with the load

of the buffer circuit. If internal measurements are desired (e.g., if the user wishes to view the signal

after processing by the input buffer), the user-defined analog signal port would be named in the

A_to_D line under port1. The A_to_D converter is “in series” with the receiver buffer model. The

vhigh and vlow parameters should be adjusted appropriate to the measurement point of interest, so

long as they as they are consistent with the [Diff Pin] vdiff declarations.

Note that the thresholds refer to the state of the non-inverting signal, using the inverting signal as a

reference. Therefore, the output signal is considered high when, for example, the non-inverting

input is +200 mV above the inverting input. Similarly, the output signal is considered low when the

same non-inverting input is -200 mV “above” the inverting input.

EDA tools will report the state of the D_receive port for true differential *-AMS [External Model]s

according to the AMS code written by the model author; the use of [Diff Pin] does not affect the

IBIS Version 6.0

109

reporting of D_receive in this case. EDA tools are free to additionally report the state of the I/O

pads according to the [Diff Pin] vdiff subparameter.

For SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) and *-AMS true differential [External

Model]s, the EDA tool must not override or change the model author’s connection of the D_receive

port.

Four additional Model_type arguments are available under the [Model] keyword. One of these

must be used when an [External Model] describes a true differential model:

I/O_diff, Output_diff, 3-state_diff, Input_diff

Two additional differential timing test loads are available:

Rref_diff, Cref_diff

These subparameters are also available under the [Model Spec] keyword for the typical, minimum,

and maximum corner cases.

These timing test loads require that both the inverting and non-inverting ports of the differential

model refer to valid buffer model data (not terminations, supply rails, etc.). The differential test

loads may also be combined with the single-ended timing test loads Rref, Cref, and Vref. Note that

the single-ended timing test loads plus Vmeas are used if Rref_diff and Cref_diff are NOT supplied.

Series and Series Switch Models:

Native IBIS did not define the transition characteristics of digital switch controls. Switches were

assumed to either be on or off during a simulation and I-V characteristics could be defined for

either or both states. The [External Model] format allows users to control the state of a switch

through the D_switch port. As with other digital ports, the use of SPICE, IBIS-ISS, Verilog-A(MS)

or VHDL-A(MS) in an [External Model] requires the user to declare D_to_A ports, to convert the

D_switch signal to an analog input to the SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

model (whether the port’s state may actually change during a simulation is determined by the EDA

tool used).

Series and Series_switch devices both are described under the [External Model] keyword using the

reserved port names A_pos and A_neg. Note that the [Series Pin Mapping] keyword must be

present and correctly used elsewhere in the file, in order to properly set the logic state of the switch.

The A_pos port is defined in the first entry of the [Series Pin Mapping] keyword, and the A_neg

port is defined in the pin2 entry. For series switches, the [Series Switch Groups] keyword is

required.

Ports required for various Model_types:

As [External Model] makes use of the [Model] keyword’s Model_type subparameter, not all digital

and analog reserved ports may be needed for all Model_types. Table 13 and Table 14 below define

which reserved port names are required for various Model_types.

Table 13 – Required Port Names for Single-ended Model_type Assignments

Model_type D_drive D_enable D_receive A_signal D_switch A_pos A_neg

I/O* X X X X

3-state* X X X

IBIS Version 6.0

110

Model_type D_drive D_enable D_receive A_signal D_switch A_pos A_neg

Output*,

Open*

X X

Input X X

Terminator X

Series X X

Series_switch X X X

Table 14 – Required Port Names for Differential Model_type Assignments

Model_type D_drive D_enable D_receive A_signal_pos A_signal_neg

I/O_diff X X X X X

3-state_diff X X X X

Output_diff X X X

Input_diff X X X

Examples:

Example [External Model] using SPICE:

[Model] ExBufferSPICE

Model_type I/O

Vinh = 2.0

Vinl = 0.8

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language SPICE

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ buffer_typ.spi buffer_io_typ

Corner Min buffer_min.spi buffer_io_min

Corner Max buffer_max.spi buffer_io_max

|

| Parameters - Not supported in SPICE

|

IBIS Version 6.0

111

| Ports List of port names (in same order as in SPICE)

Ports A_signal my_drive my_enable my_receive my_ref

Ports A_puref A_pdref A_pcref A_gcref A_extref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable A_gcref 0.0 3.3 0.5n 0.3n Typ

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive my_receive my_ref 0.8 2.0 Typ

|

| Note: A_signal might also be used instead of a user-defined interface port

| for measurements taken at the die pads

|

[End External Model]

Example [External Model] using IBIS-ISS:

[Model] ExBufferISS

Model_type I/O

Vinh = 2.0

Vinl = 0.8

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language IBIS-ISS

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ buffer_typ.spi buffer_io_typ

Corner Min buffer_min.spi buffer_io_min

Corner Max buffer_max.spi buffer_io_max

|

| List of parameters

Parameters sp_file_name =

paramfile.par(TreeRootName(Model_Specific(TstoneFile)))

Parameters C1_value

Parameters R1_value = paramfile.par(TreeRootName(Model_Specific(R1)))

|

| List of converter parameters

Converter_Parameters MyVlow = 0.0

Converter_Parameters MyVHigh = 3.3

Converter_Parameters MyVinl =

paramfile.par(TreeRootName(Model_Specific(Vinl)))

Converter_Parameters MyVinh =

paramfile.par(TreeRootName(Model_Specific(Vinh)))

Converter_Parameters MyTrise = paramfile.par(TreeRootName(Model_Specific(Trf)))

Converter_Parameters MyTfall = paramfile.par(TreeRootName(Model_Specific(Trf)))

IBIS Version 6.0

112

|

| Ports List of port names (in same order as in ISS)

Ports A_signal my_drive my_enable my_receive my_ref

Ports A_puref A_pdref A_pcref A_gcref A_extref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref MyVlow MyVhigh MyTfall MyTrise Typ

D_to_A D_enable my_enable A_gcref 0.0 3.3 0.5n 0.3n Typ

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive my_receive my_ref MyVinl MyVinh Typ

|

| Note: A_signal might also be used instead of a user-defined interface port

| for measurements taken at the die pads

|

[End External Model]

Example [External Model] using VHDL-AMS:

[Model] ExBufferVHDL

Model_type I/O

Vinh = 2.0

Vinl = 0.8

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language VHDL-AMS

|

| Corner corner_name file_name entity(architecture)

Corner Typ buffer_typ.vhd buffer(buffer_io_typ)

Corner Min buffer_min.vhd buffer(buffer_io_min)

Corner Max buffer_max.vhd buffer(buffer_io_max)

|

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

| Ports List of port names (in same order as in VHDL-AMS)

Ports A_signal A_puref A_pdref A_pcref A_gcref

Ports D_drive D_enable D_receive

|

[End External Model]

Example [External Model] using Verilog-AMS:

[Model] ExBufferVerilog

Model_type I/O

Vinh = 2.0

Vinl = 0.8

IBIS Version 6.0

113

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language Verilog-AMS

|

| Corner corner_name file_name circuit_name (module)

Corner Typ buffer_typ.v buffer_io_typ

Corner Min buffer_min.v buffer_io_min

Corner Max buffer_max.v buffer_io_max

|

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

| Ports List of port names (in same order as in Verilog-AMS)

Ports A_signal A_puref A_pdref A_pcref A_gcref

Ports D_drive D_enable D_receive

|

[End External Model]

Example [External Model] using VHDL-A(MS):

[Model] ExBufferVHDL_analog

Model_type I/O

Vinh = 2.0

Vinl = 0.8

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language VHDL-A(MS)

|

| Corner corner_name file_name circuit_name entity(architecture)

Corner Typ buffer_typ.vhd buffer(buffer_io_typ)

Corner Min buffer_min.vhd buffer(buffer_io_min)

Corner Max buffer_max.vhd buffer(buffer_io_max)

|

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

IBIS Version 6.0

114

| Ports List of port names (in same order as in VHDL-A(MS))

Ports A_signal my_drive my_enable my_receive my_ref

Ports A_puref A_pdref A_pcref A_gcref A_extref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable A_gcref 0.0 3.3 0.5n 0.3n Typ

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive my_receive my_ref 0.8 2.0 Typ

|

| Note: A_signal might also be used instead of a user-defined interface port

| for measurements taken at the die pads

Example [External Model] using Verilog-A(MS):

[Model] ExBufferVerilog_analog

Model_type I/O

Vinh = 2.0

Vinl = 0.8

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language Verilog-A(MS)

|

| Corner corner_name file_name circuit_name (module)

Corner Typ buffer_typ.va buffer_io_typ

Corner Min buffer_min.va buffer_io_min

Corner Max buffer_max.va buffer_io_max

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

| Ports List of port names (in same order as in Verilog-A(MS))

Ports A_signal my_drive my_enable my_receive my_ref

Ports A_puref A_pdref A_pcref A_gcref A_extref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable A_gcref 0.0 3.3 0.5n 0.3n Typ

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive my_receive my_ref 0.8 2.0 Typ

|

| Note: A_signal might also be used instead of a user-defined interface port

| for measurements taken at the die pads

|

[End External Model]

IBIS Version 6.0

115

Example of True Differential [External Model] using SPICE:

[Model] Ext_SPICE_Diff_Buff

Model_type I/O_diff

Rref_diff = 100

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language SPICE

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ diffio.spi diff_io_typ

Corner Min diffio.spi diff_io_min

Corner Max diffio.spi diff_io_max

|

| Ports List of port names (in same order as in SPICE)

Ports A_signal_pos A_signal_neg my_receive my_drive my_enable

Ports A_puref A_pdref A_pcref A_gcref A_extref my_ref A_gnd

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_drive my_drive my_ref 0.0 3.0 0.6n 0.3n Min

D_to_A D_drive my_drive my_ref 0.0 3.6 0.4n 0.3n Max

D_to_A D_enable my_enable my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable my_ref 0.0 3.0 0.6n 0.3n Min

D_to_A D_enable my_enable my_ref 0.0 3.6 0.4n 0.3n Max

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Typ

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Min

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Max

|

[End External Model]

Example of True Differential [External Model] using IBIS-ISS:

[Model] Ext_ISS_Diff_Buff

Model_type I/O_diff

Rref_diff = 100

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

IBIS Version 6.0

116

Language IBIS-ISS

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ diffio.spi diff_io_typ

Corner Min diffio.spi diff_io_min

Corner Max diffio.spi diff_io_max

|

| List of parameters

Parameters sp_file_name

Parameters c_diff r_diff

|

|

| List of converter parameters

Converter_Parameters MyVlow = 0.0

Converter_Parameters MyVHigh = 3.3

|

| Ports List of port names (in same order as in IBIS-ISS)

Ports A_signal_pos A_signal_neg my_receive my_driveP my_driveN my_enable

Ports A_puref A_pdref A_pcref A_gcref A_extref my_ref A_gnd

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name polarity

D_to_A D_drive my_driveP my_ref MyVlow MyVHigh 0.5n 0.3n Typ Non-Inverting

D_to_A D_drive my_driveN my_ref MyVlow MyVHigh 0.5n 0.3n Typ Inverting

D_to_A D_enable my_enable my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable my_ref 0.0 3.0 0.6n 0.3n Min

D_to_A D_enable my_enable my_ref 0.0 3.6 0.4n 0.3n Max

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Typ

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Min

A_to_D D_receive A_signal_pos A_signal_neg -200m 200m Max

|

[End External Model]

Example of True Differential [External Model] using VHDL-AMS:

[Model] Ext_VHDL_Diff_Buff

Model_type I/O_diff

Rref_diff = 100

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

| Other model subparameters are optional

|

[External Model]

Language VHDL-AMS

|

| Corner corner_name file_name entity(architecture)

Corner Typ diffio_typ.vhd buffer(diff_io_typ)

Corner Min diffio_min.vhd buffer(diff_io_min)

Corner Max diffio_max.vhd buffer(diff_io_max)

|

IBIS Version 6.0

117

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

| Ports List of port names (in same order as in VHDL-AMS)

Ports A_signal_pos A_signal_neg D_receive D_drive D_enable

Ports A_puref A_pdref A_pcref A_gcref

|

[End External Model]

Example of Pseudo-Differential [External Model] using SPICE:

| Note that [Pin] and [Diff Pin] declarations are shown for clarity

|

|

[Pin] signal_name model_name R_pin L_pin C_pin

1 Example_pos Ext_SPICE_PDiff_Buff

2 Example_neg Ext_SPICE_PDiff_Buff

|

| ...

|

[Diff Pin] inv_pin vdiff tdelay_typ tdelay_min tdelay_max

1 2 200mV 0ns 0ns 0ns

|

| ...

|

[Model] Ext_SPICE_PDiff_Buff

Model_type I/O

|

| Other model subparameters are optional

|

| typ min max

[Voltage Range] 3.3 3.0 3.6

|

[Ramp]

dV/dt_r 1.57/0.36n 1.44/0.57n 1.73/0.28n

dV/dt_f 1.57/0.35n 1.46/0.44n 1.68/0.28n

|

[External Model]

Language SPICE

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ diffio.spi diff_io_typ

Corner Min diffio.spi diff_io_min

Corner Max diffio.spi diff_io_max

|

| Ports List of port names (in same order as in SPICE)

Ports A_signal my_drive my_enable my_ref

Ports A_puref A_pdref A_pcref A_gcref A_gnd A_extref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive my_drive my_ref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_drive my_drive my_ref 0.0 3.0 0.6n 0.3n Min

D_to_A D_drive my_drive my_ref 0.0 3.6 0.4n 0.3n Max

D_to_A D_enable my_enable A_pcref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable my_enable A_pcref 0.0 3.0 0.6n 0.3n Min

D_to_A D_enable my_enable A_pcref 0.0 3.6 0.4n 0.3n Max

IBIS Version 6.0

118

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive A_signal my_ref 0.8 2.0 Typ

A_to_D D_receive A_signal my_ref 0.8 2.0 Min

A_to_D D_receive A_signal my_ref 0.8 2.0 Max

|

| This example shows the evaluation of the received signals at the die

| pads. [Diff Pin] defines the interpretation of the A_to_D output

| polarity and levels and overrides the A_to_D settings shown above.

|

[End External Model]

Keywords: [External Circuit], [End External Circuit]

Required: No

Description: Used to reference an external file containing an arbitrary circuit description using

one of the supported languages.

Sub-Params: Language, Corner, Parameters, Converter_Parameters, Ports, D_to_A, A_to_D

Usage Rules: Each [External Circuit] keyword must be followed by a unique name that differs

from any name used for any [Model] or [Submodel] keyword.

The [External Circuit] keyword may appear multiple times. It is not scoped by any other keyword.

Each instance of an [External Circuit] is referenced by one or more [Circuit Call] keywords

discussed later. (The [Circuit Call] keyword cannot be used to reference a [Model] keyword.)

The [External Circuit] keyword and contents may be placed anywhere in the file, outside of any

[Component] keyword group or [Model] keyword group, in a manner similar to that of the [Model]

keyword.

Subparameter Definitions:

Language:

Accepts “SPICE”, “IBIS-ISS”, “VHDL-AMS”, “Verilog-AMS”, “VHDL-A(MS)” or “Verilog-

A(MS)” as arguments. The Language subparameter is required and must appear only once.

Corner:

Three entries follow the Corner subparameter on each line:

corner_name file_name circuit_name

The corner_name entry is “Typ”, “Min”, or “Max”. The file_name entry points to the referenced

file in the same directory as the .ibs file.

Up to three Corner lines are permitted. A “Typ” line is required. If “Min” and/or “Max” data is

missing, the tool may use “Typ” data in its place. However, the tool should notify the user of this

action.

The circuit_name entry provides the name of the circuit to be simulated within the referenced file.

For SPICE and IBIS-ISS files, this is normally a “.subckt” name. For VHDL-AMS files, this is

normally an “entity(architecture)” name pair. For Verilog-AMS files, this is normally a “module”

name.

IBIS Version 6.0

119

No character limits, case-sensitivity limits or extension conventions are required or enforced for

file_name and circuit_name entries. However, the total number of characters in each Corner line

must comply with Section 3. Furthermore, lower-case file_name entries are recommended to avoid

possible conflicts with file naming conventions under different operating systems. Case

differences between otherwise identical file_name entries or circuit_name entries should be

avoided. External languages may not support case-sensitive distinctions.

Parameters:

Lists names of parameters that may be passed into an external circuit file. Each Parameters entry

must match a name or keyword in the external file or language. The list of Parameters can span

several lines by using the word Parameters at the start of each line. The Parameters subparameter

is optional, and the external circuit must operate with default settings without any Parameters

assignments.

Parameter passing is not supported in SPICE. VHDL-AMS and VHDL-A(MS) parameters are

supported using “generic” names, and Verilog-AMS and Verilog-A(MS) parameters are supported

using “parameter” names. IBIS-ISS parameters are supported for all IBIS-ISS parameters which

are defined on the subcircuit definition line.

Parameters are locally scoped under each [External Circuit] keyword, i.e., the same parameter

under two different [External Circuit] will have independent values.

The parameter(s) listed under the Parameters subparameter may optionally be followed by an equal

sign and a numeric, Boolean or string literal or a reference to a parameter name which is located in

a parameter tree. The reference must begin with a file name, followed by an open parentheses and

a the tree root name, a new open parentheses for any branch names (including the

Reserved_Parameters or Model_Specific branch names if present in the tree) and the parameter

name, and a matching set of closing parentheses. The file reference may point to any file which

contains one or more parameter trees. The files referenced must be located in the same directory as

the .ibs file containing the reference. The file names of parameter files must follow the rules for

file names given in Section 3, “GENERAL SYNTAX RULES AND GUIDELINES”. Parameter

files may only contain parameter trees using the tree syntax described in IBIS in Section 10.3 with

the following exceptions and additions:

When the extension of the external parameter’s file name ends with “.ami”:

a) only Usage In or Usage Info are allowed for parameters which are to be passed into

models instantiated by the [External Model] or the [External Circuit] keywords

When the extension of the external parameter’s file name does not end with “.ami”:

a) the parameter tree must not contain the Reserved_Parameters branch but must

contain the Model_Specific branch

b) only Usage Info is allowed

Note that in the case when a parameter is located in an .ami file and it is of Usage In, the parameter

value will be passed into the AMI executable model but this does not mean that the same parameter

couldn’t be used by other model(s) which are instantiated through [External Model] or [External

Circuit].

Multiple parameters may only be listed on a single line if no value assignments are made. When the

Parameters line includes a parameter value assignment, each parameter must be listed on a new line.

String literals must be enclosed in double quotes.

IBIS Version 6.0

120

The EDA tool may provide additional means to the user to assign values to Parameters. This may

include the option to override the values provided in the .ibs file, to allow the user to make

selections for multi-valued parameters in the parameter tree, or to provide values for uninitialized

Parameters.

Converter_Parameters:

This optional subparameter lists and initializes parameter names to be used as arguments in the

A_to_D and/or D_to_A converter(s) of the [External Circuit] keyword under which it appears. The

list of Converter_Parameters may span several lines by using the word Converter_Parameters at the

start of each line. Any A_to_D or D_to_A argument which is entered as a parameter must be

declared and initialized with the Converter_Parameters subparameter.

Converter_Parameters are locally scoped under each [External Circuit] keyword, i.e., the same

converter parameter under two different [External Circuit]s will have independent values.

The Converter_Parameters subparameter must contain one parameter name per line, which must be

followed by an equal sign and a constant numeric literal or a reference to a parameter name which

is located in a parameter tree. The reference must begin with a file name, followed by an open

parentheses and a the tree root name, a new open parentheses for any branch names (including the

Reserved_Parameters or Model_Specific branch names if present in the tree) and the parameter

name, and a matching set of closing parentheses. The file reference may point to any file which

contains one or more parameter trees. The files referenced must be located in the same directory as

the .ibs file containing the reference. The file names of parameter files must follow the rules for

file names given in Section 3, “GENERAL SYNTAX RULES AND GUIDELINES”. Parameter

files may only contain parameter trees using the tree syntax described in IBIS in Section 10.3 with

the following exceptions and additions:

When the extension of the external parameter’s file name ends with “.ami”:

a) only Usage In or Usage Info are allowed for parameters which are to be passed into

models instantiated by the [External Model] or the [External Circuit] keywords

When the extension of the external parameter’s file name does not end with “.ami”:

a) the parameter tree must not contain the Reserved_Parameters branch but must

contain the Model_Specific branch

b) only Usage Info is allowed

Note that in the case when a parameter is located in an .ami file and it is of Usage In, the parameter

value will be passed into the AMI executable model but this does not mean that the same parameter

couldn’t be used by other model(s) which are instantiated through [External Model] or [External

Circuit].

The EDA tool may provide additional means to the user to make assignments to

Converter_Parameters. This may include the option to override the values provided in the .ibs file,

or to allow the user to make selections for multi-valued parameters in the parameter tree.

Ports:

Ports are interfaces to the [External Circuit] which are available to the user and tool at the IBIS

level. They are used to connect the [External Circuit] to die pads. The Ports parameter is used to

identify the ports of the [External Circuit] to the simulation tool. The port assignment is by

position and the port names do not have to match exactly the names inside the external file. The

list of port names may span several lines if the word Ports is used at the start of each line.

IBIS Version 6.0

121

The Ports parameter is used to identify the ports of the [External Circuit] to the simulation tool.

The port assignment is by position and the port names do not have to match exactly the port names

in the external file. The list of port names may span several lines if the word Ports is used at the

start of each line.

[External Circuit] allows any number of ports to be defined, with any names which comply with

Section 3 format requirements. Reserved port names may be used, but ONLY DIGITAL PORTS

will have the pre-defined functions listed in the General Assumptions heading above. User-defined

and reserved port names may be combined within the same [External Circuit].

The [Pin Mapping] keyword cannot be used with [External Circuit] in the same [Component]

description.

Digital-to-Analog/Analog-to-Digital Conversions:

These subparameters define all digital-to-analog and analog-to-digital converters needed to

properly connect digital signals with the analog ports of referenced external SPICE, IBIS-ISS,

Verilog-A(MS) or VHDL-A(MS) models. These subparameters must be used when [External

Circuit] references a file written in the SPICE, IBIS-ISS,Verilog-A(MS) or VHDL-A(MS)

language. They are not permitted with Verilog-AMS or VHDL-AMS external files.

D_to_A:

As assumed in [Model] and [External Model], some interface ports of [External Circuit]s expect

digital input signals. As SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) models understand

only analog signals, some conversion from digital to analog format is required. For example, input

logical states such as “0” or “1” must be converted to actual input voltage stimuli, such as a voltage

ramp, for SPICE simulation.

The D_to_A subparameter provides information for converting a digital stimulus, such as “0” or

“1”, into an analog voltage ramp (a digital “X” input is ignored by D_to_A converters). Each

digital port which carries data for conversion to analog format must have its own D_to_A

declaration.

The D_to_A subparameter is followed by eight or optionally nine arguments:

d_port port1 port2 vlow vhigh trise tfall corner_name polarity

The d_port entry holds the name of the digital port. This entry may contain user-defined port

names or the reserved port names D_drive, D_enable, and D_switch. he port1 and port2 entries

hold the SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) analog input port names across which

voltages are specified. These entries contain user-defined port names. One of these port entries

must name a reference for the other port (for example, A_gnd).

Normally, port1 accepts an input signal and port2 is the reference for port1. However, for an

opposite polarity stimulus, port1 could be connected to a voltage reference and port2 could serve as

the input. In some situations, such as in the case of a true differential buffer model, it might be

desirable to provide two D_to_A converters, one to drive the Non-Inverting input and the other one

to drive the Inverting input. In this case the D_to_A converters may be defined with the polarity

argument, one with the value Non-Inverting and the other with the value Inverting.

The vlow and vhigh entries accept voltage values which correspond to fully-off and fully-on states,

where the vhigh value must be greater than the vlow value. When polarity is Non-Inverting, vlow

corresponds to the digital off state '0', vhigh corresponds to the digital on state '1', trise corresponds

to the analog edge rate going from the digital off to on state, and tfall corresponds to the analog

IBIS Version 6.0

122

edge rate going from the digital on to off state. When polarity is Inverting, the analog behavior

corresponds to the opposite digital states. For example, a 3.3 V ground-referenced buffer would

list vlow as 0 V and vhigh as 3.3 V. For a Non-Inverting D_to_A converter, a rising edge in

D_drive would result in a transition from 0 V to 3.3 V, and for an Inverting D_to_A converter, a

rising edge in D_drive would result in a transition from 3.3 V to 0 V. The trise and tfall entries are

times, must be positive and define input ramp rise and fall times between 0 and 100 percent.

The vlow, vhigh, trise and tfall arguments may be defined by parameter names, which must be

declared and initialized by one or more Converter_Parameters subparameter.

The corner_name entry holds the name of the external circuit corner being referenced, as listed

under the Corner subparameter.

The last argument, polarity, is optional. If present, its value must be "Inverting" or "Non-Inverting".

If the argument is not present, "Non-Inverting" is in effect. The polarity argument may only be

used with D_to_A converters which are connected to the d_port name D_drive. If the polarity

argument is used, two D_to_A converter lines are required, one defined as Non-Inverting and

another defined as Inverting. Any number of D_to_A subparameter lines is allowed, so long as

each contains a unique port name entry and at least one unique port1 or port2 entry (i.e., several

D_to_A declarations may use the same reference node under port1 or port2). At least one D_to_A

line must be present, corresponding to the “Typ” corner model, for each digital line to be converted.

Additional D_to_A lines for other corners may be omitted. In this case, the typical corner D_to_A

entries will apply to all model corners and the “Typ” corner_name entry may be omitted if the

polarity argument is not present. When the polarity argument is present, the corner_name

argument must also be present.

A_to_D:

The A_to_D subparameter is used to generate a digital state (“0”, “1”, or “X”) based on analog

voltages from the SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS) model or from the pad/pin.

This allows an analog signal from the external SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

circuit to be read as a digital signal by the simulation tool.

The A_to_D subparameter is followed by six arguments:

d_port port1 port2 vlow vhigh corner_name

The d_port entry lists port names to be used for digital signals going. As with D_to_A, the port1

entry would contain a user-defined analog signal. Port2 would list another port name to be used as

a reference. The voltage measurements are taken from the port1 entry with respect to the port2

entry. These ports must also be named by the Ports subparameter.

The vlow and vhigh entries list the low and high analog threshold voltage values. The reported

digital state on D_receive will be “0” if the measured voltage is lower than the vlow value, “1” if

above the vhigh value, and “X” otherwise.

The vlow and vhigh arguments may be defined by parameter names, which must be declared and

initialized by one or more Converter_Parameters subparameter.

The corner_name entry holds the name of the external model corner being referenced, as listed

under the Corner subparameter.

Any number of A_to_D subparameter lines is allowed, so long as each line contains at least one

column entry which is distinct from the column entries of all other lines. In practice, this means

that A_to_D subparameter lines describing different corners will have identical port names. Other

IBIS Version 6.0

123

kinds of variations described through A_to_D subparameter lines should use unique port names.

For example, a user may wish to create additional A_to_D converters for individual analog signals

to monitor common mode behaviors on differential buffers.

At least one A_to_D line must be supplied corresponding to the “Typ” corner model. Other

A_to_D lines for other corners may be omitted. In this case, the typical corner D_to_A entries will

apply to all model corners.

IMPORTANT: measurements for receivers in IBIS may be conducted at the die pads or the pins.

In such cases, the electrical input model data comprises a “load” which affects the waveform seen.

However, for [External Circuit]s, the user may choose whether to measure the analog input

response in the usual fashion or internal to the circuit (this does not preclude tools from reporting

digital D_receive and/or analog responses in addition to normal A_signal response). If native IBIS

measurements are desired, the A_signal port would be named in the A_to_D line under port1. The

A_to_D converter then effectively acts “in parallel” with the load of the circuit. If internal

measurements are desired (e.g., if the user wishes to view the signal after processing by the

receiver), the user-defined analog signal port would be named in the A_to_D line under port1. The

A_to_D converter is effectively “in series” with the receiver model. The vhigh and vlow

parameters should be adjusted appropriate to the measurement point of interest.

Note that, while the port assignments and SPICE, IBIS-ISS, Verilog-A(MS) or VHDL-A(MS)

model data must be provided by the user, the D_to_A and A_to_D converters will be provided

automatically by the tool. There is no need for the user to develop external SPICE, IBIS-ISS,

Verilog-A(MS) or VHDL-A(MS) code specifically for these functions.

The [Diff Pin] keyword is NOT required for true differential [External Circuit] descriptions.

Pseudo-differential buffers are not supported under [External Circuit]. Use the existing [Model]

and [External Model] keywords to describe these structures.

Note that the EDA tool is responsible for determining the specific measurement points for reporting

timing and signal quality for [External Circuit]s.

In all other respects, [External Circuit] behaves exactly as [External Model].

Examples:

Example of Model B as an [External Circuit] using SPICE:

[External Circuit] BUFF-SPICE

Language SPICE

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ buffer_typ.spi bufferb_io_typ

Corner Min buffer_min.spi bufferb_io_min

Corner Max buffer_max.spi bufferb_io_max

|

| Parameters - Not supported in SPICE

|

| Ports List of port names (in same order as in SPICE)

Ports A_signal int_in int_en int_out A_control

Ports A_puref A_pdref A_pcref A_gcref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive int_in my_gcref 0.0 3.3 0.5n 0.3n Typ

D_to_A D_drive int_in my_gcref 0.0 3.0 0.6n 0.3n Min

D_to_A D_drive int_in my_gcref 0.0 3.6 0.4n 0.3n Max

IBIS Version 6.0

124

D_to_A D_enable int_en my_gnd 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable int_en my_gnd 0.0 3.0 0.6n 0.3n Min

D_to_A D_enable int_en my_gnd 0.0 3.6 0.4n 0.3n Max

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive int_out my_gcref 0.8 2.0 Typ

A_to_D D_receive int_out my_gcref 0.8 2.0 Min

A_to_D D_receive int_out my_gcref 0.8 2.0 Max

|

| Note, the A_signal port might also be used and int_out not defined in

| a modified .subckt.

|

[End External Circuit]

Example [External Circuit] using IBIS-ISS:

[External Circuit] BUFF-ISS

Language IBIS-ISS

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ buffer_typ.spi bufferb_io_typ

Corner Min buffer_min.spi bufferb_io_min

Corner Max buffer_max.spi bufferb_io_max

|

| List of parameters

Parameters sp_file_name =

paramfile.par(TreeRootName(Model_Specific(TstoneFile)))

Parameters C1_value

Parameters R1_value = paramfile.par(TreeRootName(Model_Specific(R1)))

|

Converter_Parameters MyVlow = 0.0

Converter_Parameters MyVHigh = 3.3

Converter_Parameters MyVinl =

paramfile.par(TreeRootName(Model_Specific(Vinl)))

Converter_Parameters MyVinh =

paramfile.par(TreeRootName(Model_Specific(Vinh)))

Converter_Parameters MyTrise = paramfile.par(TreeRootName(Model_Specific(Trf)))

Converter_Parameters MyTfall = paramfile.par(TreeRootName(Model_Specific(Trf)))

|

| Ports List of port names (in same order as in ISS)

Ports A_signal int_in int_en int_out A_control

Ports A_puref A_pdref A_pcref A_gcref

|

| D_to_A d_port port1 port2 vlow vhigh trise tfall corner_name

D_to_A D_drive int_in my_gcref MyVlow MyVhigh MyTfall MyTrise Typ

D_to_A D_enable int_en my_gnd 0.0 3.3 0.5n 0.3n Typ

D_to_A D_enable int_en my_gnd 0.0 3.0 0.6n 0.3n Min

D_to_A D_enable int_en my_gnd 0.0 3.6 0.4n 0.3n Max

|

| A_to_D d_port port1 port2 vlow vhigh corner_name

A_to_D D_receive int_out my_gcref MyVinl MyVinh Typ

|

| Note, the A_signal port might also be used and int_out not defined in

| a modified .subckt.

|

[End External Circuit]

IBIS Version 6.0

125

Example [External Circuit] using VHDL-AMS:

[External Circuit] BUFF-VHDL

Language VHDL-AMS

|

| Corner corner_name file_name entity(architecture)

Corner Typ buffer_typ.vhd bufferb(buffer_io_typ)

Corner Min buffer_min.vhd bufferb(buffer_io_min)

Corner Max buffer_max.vhd bufferb(buffer_io_max)

|

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

| Ports List of port names (in same order as in VHDL-AMS)

Ports A_signal A_puref A_pdref A_pcref A_gcref A_control

Ports D_drive D_enable D_receive

|

[End External Circuit]

Example [External Circuit] using Verilog-AMS:

[External Circuit] BUFF-VERILOG

Language Verilog-AMS

|

| Corner corner_name file_name circuit_name (module)

Corner Typ buffer_typ.v bufferb_io_typ

Corner Min buffer_min.v bufferb_io_min

Corner Max buffer_max.v bufferb_io_max

|

| Parameters List of parameters

Parameters delay rate

Parameters preemphasis

|

| Ports List of port names (in same order as in Verilog-AMS)

Ports A_signal A_puref A_pdref A_pcref A_gcref A_control

Ports D_drive D_enable D_receive

|

[End External Circuit]

Example [External Circuit] using SPICE:

| Interconnect Structure as an [External Circuit]

|

|

[External Circuit] BUS_SPI

Language SPICE

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ bus_typ.spi Bus_typ

Corner Min bus_min.spi Bus_min

Corner Max bus_max.spi Bus_max

|

| Parameters - Not supported in SPICE

|

| Ports are in same order as defined in SPICE

Ports vcc gnd io1 io2

IBIS Version 6.0

126

Ports int_ioa vcca1 vcca2 vssa1 vssa2

Ports int_iob vccb1 vccb2 vssb1 vssb2

|

| No A_to_D or D_to_A required, as no digital ports are used

|

[End External Circuit]

Example [External Circuit] using IBIS-ISS:

| Interconnect Structure as an [External Circuit]

|

|

[External Circuit] BUS_SPI

Language IBIS-ISS

|

| Corner corner_name file_name circuit_name (.subckt name)

Corner Typ bus_typ.spi Bus_typ

Corner Min bus_min.spi Bus_min

Corner Max bus_max.spi Bus_max

|

| List of parameters

Parameters sp_file_name

Parameters C1_value R1_value

|

| Ports are in same order as defined in IBIS-ISS

Ports vcc gnd io1 io2

Ports int_ioa vcca1 vcca2 vssa1 vssa2

Ports int_iob vccb1 vccb2 vssb1 vssb2

|

| No A_to_D or D_to_A required, as no digital ports are used

|

[End External Circuit]

Example [External Circuit] using VHDL-AMS:

[External Circuit] BUS_VHD

Language VHDL-AMS

|

| Corner corner_name file_name entity(architecture)

Corner Typ bus.vhd Bus(Bus_typ)

Corner Min bus.vhd Bus(Bus_min)

Corner Max bus.vhd Bus(Bus_max)

|

| Parameters List of parameters

Parameters r1 l1

Parameters r2 l2 temp

|

| Ports are in the same order as defined in VHDL-AMS

Ports vcc gnd io1 io2

Ports int_ioa vcca1 vcca2 vssa1 vssa2

Ports int_iob vccb1 vccb2 vssb1 vssb2

Example [External Circuit] using Verilog-AMS:

[External Circuit] BUS_V

Language Verilog-AMS

|

| Corner corner_name file_name circuit_name (module)

IBIS Version 6.0

127

Corner Typ bus.v Bus_typ

Corner Min bus.v Bus_min

Corner Max bus.v Bus_max

|

| Parameters List of parameters

Parameters r1 l1

Parameters r2 l2 temp

|

| Ports are in the same order as defined in Verilog-AMS

Ports vcc gnd io1 io2

Ports int_ioa vcca1 vcca2 vssa1 vssa2

Ports int_iob vccb1 vccb2 vssb1 vssb2

|

[End External Circuit]

The scope of the following keywords is limited to the [Component] keyword. They apply to the

specific set of pin numbers and internal nodes only within that [Component].

Keywords: [Node Declarations], [End Node Declarations]

Required: Yes, if any internal nodes exist on the die as listed in [Circuit Call], and/or if any die

pads need to be explicitly defined.

Description: Provides a list of internal die nodes and/or die pads for a [Component] to make

unambiguous interconnection descriptions possible.

Usage Rules: All die node and die pad names that appear under any [Circuit Call] keyword within

the same [Component] must be listed under the [Node Declarations] keyword.

If used, the [Node Declarations] keyword must appear before any [Circuit Call] keyword(s) under

the [Component] keyword. Only one [Node Declarations] keyword is permitted for each

[Component] keyword. Since the [Node Declarations] keyword is part of the [Component]

keyword, all internal node or pad references apply only to that [Component] (i.e., they are local).

The internal die node and/or die pad names within [Node Declarations] must be unique and

therefore different from the pin names used in the [Pin] keyword. Each node and/or pad name must

be separated by at least one white space. The list may span several lines and is terminated by the

[End Node Declarations] keyword.

The names of die nodes and die pads can be composed of any combination of the legal characters

outlined in Section 3.

Example:

[Node Declarations] | Must appear before any [Circuit Call] keyword

|

| Die nodes:

a b c d e | List of die nodes

f g h nd1

|

| Die pads:

pad_2a pad_2b pad_4 pad_11 | List of die pads

|

[End Node Declarations]

IBIS Version 6.0

128

Keywords: [Circuit Call], [End Circuit Call]

Required: Yes, if any [External Circuit]s are present in a [Component].

Description: This keyword is used to instantiate [External Circuit]s and to connect their ports to

the die nodes or die pads.

Sub-Params: Signal_pin, Diff_signal_pins, Series_pins, Port_map

Usage Rules: The [Circuit Call] keyword must be followed by the name of an [External Circuit]

that exists in the same [Component].

When a [Circuit Call] keyword defines any connections that involve one or more die pads (and

consequently pins), the corresponding pins on the [Pin] list must use the reserved word

“CIRCUITCALL” in the third column instead of a model name.

Each [External Circuit] must have at least one corresponding [Circuit Call] keyword. Multiple

[Circuit Call] keywords may appear under a [Component] using the same [External Circuit] name,

if multiple instantiations of an [External Circuit] are needed.

Signal_pin, Diff_signal_pins, or Series_pins:

The purpose of these subparameters is to identify which [External Circuit] needs to be stimulated in

order to obtain a signal on a certain pin. These subparameters must be used only when the [External

Circuit] that is referenced by the [Circuit Call] keyword makes use of the stimulus signal of the

simulator. Any given [Circuit Call] keyword must contain no more than one instance of only one of

these three subparameters. The subparameter is followed by one or two pin names which must be

defined by the [Pin] keyword.

Signal_pin is used when the referenced [External Circuit] has a single analog signal port (I/O)

connection to one pin. The subparameter is followed by a pin name that must match one of the pin

names under the [Pin] keyword.

Diff_signal_pins is used when the referenced [External Circuit] describes a true differential model

which has two analog signal port (I/O) connections, each to a separate pin. The subparameter is

followed by two pin names, each of which must match one of the pin names under the [Pin]

keyword. The first and second pin names correspond to the non-inverting and inverting signals of

the differential model, respectively. The two pin names must not be identical.

Series_pins is used when the referenced [External Circuit] describes a Series or Series_switch

model which has two analog signal port (I/O) connections to two pins. The subparameter is

followed by two pin names, each of which must match one of the pin names under the [Pin]

keyword. The first and second pin names correspond to the positive and negative ports of the

Series or Series_switch model, respectively. However, the polarity order matters only when the

model is polarity sensitive (as with the [Series Current] keyword). The two pin names must not be

identical.

Port_map:

The Port_map subparameter is used to connect the ports of an [External Circuit] to die nodes or die

pads.

Every occurrence of the Port_map subparameter must begin on a new line and must be followed by

two arguments, the first being a port name, and the second being a die node, die pad, or a pin name.

IBIS Version 6.0

129

The first argument of Port_map must contain a port name that matches one of the port names in the

corresponding [External Circuit] definition. No port name may be listed more than once within a

[Circuit Call] statement. Only those port names need to be listed with the Port_map subparameter

which are connected to a die node or a die pad. This includes reserved and/or user-defined port

names.

The second argument of the Port_map subparameter contains the name of a die node, die pad, or a

pin. The names of die nodes, die pads, and pins may appear multiple times as Port_map

subparameter arguments within the same [Circuit Call] statement to signify a common connection

between multiple ports, such as common voltage supply.

Please note that a pin name in the second argument does not mean that the connection is made

directly to the pin. Since native IBIS does not have a mechanism to declare die pads explicitly,

connections to die pads are made through their corresponding pin names (listed under the [Pin]

keyword). This convention must only be used with native IBIS package models where a one-to-one

path between the die pads and pins is assumed. When a package model other than native IBIS is

used with a [Component], the second argument of Port_map must have a die pad or die node name.

These names are matched to the corresponding port name of the non-native package model by

name (not by position). In this case, the package model may have an arbitrary circuit topology

between the die pads and the pins. A one-to-one mapping is not required.

Examples:

NOTE REGARDING THIS EXAMPLE:

The pad_* to pin connections in Figure 29 and in the example lines with the comment, "explicit

pad connection", are shown for reference. The connection syntax has not yet been defined.

Therefore, the connections for pad_* to pin are not supported in this specification.

For the examples below please refer to Figure 29 and the example provided for the [Node

Declarations] keyword.

IBIS Version 6.0

130

10 Vcc

1 Buffer A

11 GND

vcc 10

io1 1

gnd pad_11

D_drive
D_enable

A_mypcr a vcca1
A_mypur b vcca2
A_mysig c int_ioa
A_mypdr d vssa1
A_mygcr e vssa2

D_drive

[External Circuit]

Notes:
1) The ports of the [External Model] E are automatically connected by
the tool, taking the [Pin Mapping] keyword into consideration, if exists.
2) The package model shown in this drawing assumes the capabilities of a
non-native IBIS package model are available to the model author.

D_receive

A_pcref
A_puref

A_signal
A_pdref
A_gcref

A_external
A_gnd

[External Circuit]

[External Circuit]

[External Circuit]

[External Circuit]

[External Model] inside [Model]

nd1 D_mydrv
 D_enable

D_receive

D_drive
D_enable

nd1 D_receive

A_mypur f vccb1
A_mysig g int_ob
A_mypdr h vssb1

Component Die Package Pins/balls

A_mypcr 10 (to pin/pad 10)
A_mypur 10 (to pin/pad 10)
A_mysig 3
A_mypdr pad_11
A_mygcr pad_11

A_mypcr 10 (to pin/pad 10)
A_mysig pad_4 pad_4
A_mygcr pad_11

Die_
Interconnect

Analog Buffer Control

A_mycnt

o2 pad_2a

pad_2b

3 Buffer C

2 Self Adjusting Buffer

4a Clocka

4b Clockb

5 Buffer E

A

B

C

D

E

D_receive

Figure 29 - Reference Example for [Node Declarations] Keyword

IBIS Version 6.0

131

[Circuit Call] A | Instantiates [External Circuit] named "A"

|

Signal_pin 1

|

| mapping port pad/node

|

Port_map A_mypcr a | Port to internal node connection

Port_map A_mypur b | Port to internal node connection

Port_map A_mysig c | Port to internal node connection

Port_map A_mypdr d | Port to internal node connection

Port_map A_mygcr e | Port to internal node connection

|

[End Circuit Call]

|

|

[Circuit Call] B | Instantiates [External Circuit] named "B"

|

Signal_pin 2

|

| mapping port pad/node

|

Port_map A_mypur f | Port to internal node connection

Port_map A_mysig g | Port to internal node connection

Port_map A_mypdr h | Port to internal node connection

Port_map A_mycnt pad_2b | Port to explicit pad connection

|

[End Circuit Call]

|

|

[Circuit Call] C | Instantiates [External Circuit] named "C"

|

Signal_pin 3

|

| mapping port pad/node

|

Port_map A_mypcr 10 | Port to implicit pad connection

Port_map A_mypur 10 | Port to implicit pad connection

Port_map A_mysig 3 | Port to implicit pad connection

Port_map A_mypdr pad_11 | Port to explicit pad connection

Port_map A_mygcr pad_11 | Port to explicit pad connection

Port_map D_mydrv nd1 | Port to internal node connection

|

[End Circuit Call]

|

|

[Circuit Call] D | Instantiates [External Circuit] named "D"

|

Signal_pin 4a

|

| mapping port pad/node

|

Port_map A_my_pcref 10 | Port to implicit pad connection

Port_map A_my_signal pad_4 | Port to explicit pad connection

Port_map A_my_gcref pad_11 | Port to explicit pad connection

Port_map D_receive nd1 | Port to internal node connection

IBIS Version 6.0

132

|

[End Circuit Call]

|

|

[Circuit Call] Die_Interconnect | Instantiates [External Circuit] named

| "Die_Interconnect"

|

| mapping port pad/node

|

Port_map vcc 10 | Port to implicit pad connection

Port_map gnd pad_11 | Port to explicit pad connection

Port_map io1 1 | Port to implicit pad connection

Port_map o2 pad_2a | Port to explicit pad connection

Port_map vcca1 a | Port to internal node connection

Port_map vcca2 b | Port to internal node connection

Port_map int_ioa c | Port to internal node connection

Port_map vssa1 d | Port to internal node connection

Port_map vssa2 e | Port to internal node connection

Port_map vccb1 f | Port to internal node connection

Port_map int_ob g | Port to internal node connection

Port_map vssb1 h | Port to internal node connection

|

[End Circuit Call]

6.4 TEST LOAD AND DATA DESCRIPTION

INTRODUCTION

The [Test Load] and [Test Data] keywords are top-level keywords to provide reference waveforms

against which IBIS model simulation results can be compared to determine the accuracy of the

IBIS data and simulator implementation.

KEYWORD DEFINITIONS

Keyword: [Test Data]

Required: No

Description: Indicates the beginning of a set of Golden Waveforms and references the conditions

under which they were derived. A .ibs file may contain any number of [Test Data] sections

representing different driver and load combinations. Golden Waveforms are a set of waveforms

simulated using known ideal test loads. They are useful in verifying the accuracy of behavioral

simulation results against the transistor level circuit model from which the IBIS model parameters

originated.

Sub-Params: Test_data_type, Driver_model, Driver_model_inv, Test_load

Usage Rules: The name following the [Test Data] keyword is required. It allows a tool to select

which data to analyze.

The Test_data_type subparameter is required, and its value must be either “Single_ended” or

“Differential.” The value of Test_data_type must match the value of Test_load_type found in the

load called by Test_load.

The Driver_model subparameter is required. Its value specifies the “device-under-test” and must

be a valid [Model] name. Driver_model_inv is only legal if Test_data_type is Differential.

Driver_model_inv is not required but may be used in the case in which a differential driver uses

two different models for the inverting and non-inverting pins.

The Test_load subparameter is required and indicates which [Test Load] was used to derive the

Golden Waveforms. It must reference a valid [Test Load] name.

Example:

[Test Data] Data1

Test_data_type Single_ended

Driver_model Buffer1

Test_load Load1

Keywords: [Rising Waveform Near], [Falling Waveform Near], [Rising Waveform Far],

[Falling Waveform Far], [Diff Rising Waveform Near], [Diff Falling Waveform Near],

[Diff Rising Waveform Far], [Diff Falling Waveform Far]

Required: At least one Rising/Falling waveform is required under the scope of the [Test Data]

keyword.

Description: Describes the shape of the rising and falling Golden Waveforms of a given driver

and a given [Test Load] measured at the driver I/O pad (near) or receiver I/O pad (far). A model

IBIS Version 6.0

134

developer may use the [Rising Waveform Near/Far] and [Falling Waveform Near/Far] keywords to

document Golden Waveforms whose purpose is to facilitate the correlation of reference waveforms

and behavioral simulations.

Usage Rules: The process, temperature, and voltage conditions under which the Golden

Waveforms are generated must be identical to those used to generate the I-V and V-T tables. The

Golden Waveforms must be generated using unpackaged driver and receiver models. The simulator

must NOT use the Golden Waveform tables in the construction of its internal stimulus function.

The tables must conform to the format described under the [Rising Waveform] and [Falling

Waveform] keywords.

Both differential and single-ended waveforms are allowed regardless of the value of

Test_data_type. If Test_data_type is Single_ended then differential waveforms will be ignored. If

Test_data_type is Differential, a single-ended waveform refers to the model specified by

Driver_model and the non-inverting driver output.

Example:

[Rising Waveform Far]

| Time V(typ) V(min) V(max)

 0.0000s 25.2100mV 15.2200mV 43.5700mV

 0.2000ns 2.3325mV -8.5090mV 23.4150mV

 0.4000ns 0.1484V 15.9375mV 0.3944V

 0.6000ns 0.7799V 0.2673V 1.3400V

 0.8000ns 1.2960V 0.6042V 1.9490V

 1.0000ns 1.6603V 0.9256V 2.4233V

 1.2000ns 1.9460V 1.2050V 2.8130V

 1.4000ns 2.1285V 1.3725V 3.0095V

 1.6000ns 2.3415V 1.5560V 3.1265V

 1.8000ns 2.5135V 1.7015V 3.1600V

 2.0000ns 2.6460V 1.8085V 3.1695V

| ...

 10.0000ns 2.7780V 2.3600V 3.1670V

|

[Falling Waveform Far]

| Time V(typ) V(min) V(max)

 0.0000s 5.0000V 4.5000V 5.5000V

 0.2000ns 4.7470V 4.4695V 4.8815V

 0.4000ns 3.9030V 4.0955V 3.5355V

 0.6000ns 2.7313V 3.4533V 1.7770V

 0.8000ns 1.8150V 2.8570V 0.8629V

 1.0000ns 1.1697V 2.3270V 0.5364V

 1.2000ns 0.7539V 1.8470V 0.4524V

 1.4000ns 0.5905V 1.5430V 0.4368V

 1.6000ns 0.4923V 1.2290V 0.4266V

 1.8000ns 0.4639V 0.9906V 0.4207V

 2.0000ns 0.4489V 0.8349V 0.4169V

| ...

 10.0000ns 0.3950V 0.4935V 0.3841V

IBIS Version 6.0

135

Keyword: [Test Load]

Required: No

Description: Defines a generic test load network and its associated electrical parameters for

reference by Golden Waveforms under the [Test Data] keyword. The Golden Waveform tables

correspond to a given [Test Load] which is specified by the Test_load subparameter under the [Test

Data] keyword.

Sub-Params: Test_load_type, C1_near, Rs_near, Ls_near, C2_near, Rp1_near, Rp2_near, Td, Zo,

Rp1_far, Rp2_far, C2_far, Ls_far, Rs_far, C1_far, V_term1, V_term2, Receiver_model,

Receiver_model_inv, R_diff_near, R_diff_far.

Usage Rules: The Test_load_type subparameter is required, and its value must be either

“Single_ended” or “Differential.”

The subparameters specify the electrical parameters associated with a fixed generic test load.

Figure 30 describes the single_ended test load.

All subparameters except Test_load_type are optional. If omitted, series elements are shorted and

shunt elements are opened by default.

V_term1

Ls_far

Rp2_near

Td
Zo

receiver_model_name

NEAR FAR

Rp2_far

Rp1_near Rp1_far

Rs_farRs_near Ls_near

C2_far

C1_far

C1_near

C2_near

V_term2

Figure 30 - [Test Load] Elements and Placement

If the Td subparameter is present, then the Zo subparameter must also be present. If the Td

subparameter is not present, then the simulator must remove the transmission line from the network

and short the two nodes to which it was connected.

V_term1 defines the termination voltage for parallel termination resistors Rp1_near and Rp1_far.

This voltage is not related to the [Voltage Range] keyword. If either Rp1_near or Rp1_far is used,

then V_term1 must also be used.

V_term2 defines the termination voltage for parallel termination resistors Rp2_near and Rp2_far. If

either Rp2_near or Rp2_far is used, then V_term2 must also be used.

IBIS Version 6.0

136

Receiver_model is optional and indicates which, if any, receiver is connected to the far end node. If

not used, the network defaults to no receiver.

Receiver_model_inv is not required but may be used in the case in which a differential receiver

uses two different models for the inverting and non-inverting pins. Receiver_model_inv is ignored

if Test_load_type is Single-ended.

If Test_load_type is Differential, then the test load is a pair of the above circuits. If the

R_diff_near or R_diff_far subparameter is used, a resistor is connected between the near or far

nodes of the two circuits. If Test_load_type is Single_ended, R_diff_near and R_diff_far are

ignored.

Example:

[Test Load] Load1

Test_load_type Single_ended

C1_near = 1p

Rs_near = 10

Ls_near = 1n

C2_near = 1p

Rp1_near = 100

Rp2_near = 100

Td = 1ns

Zo = 50

Rp1_far = 100

Rp2_far = 100

C2_far = 1p

Ls_far = 1n

Rs_far = 10

C1_far = 1p

R_diff_far = 100

Receiver_model Input1

| variable typ min max

|

V_term1 1.5 1.4 1.6

V_term2 0.0 0.0 0.0

|

| Example of a transmission line and receiver test load

|

[Test Load] Tline_rcv

Td = 1n

Zo = 50

Receiver_model Input1

IBIS Version 6.0

137

7 PACKAGE MODELING

The [Package Model] keyword is optional. If more than the default RLC package model is desired,

use the [Define Package Model] keyword.

Use the [Package Model] keyword within a [Component] to indicate the package model for that

component. The specification permits .ibs files to contain the following additional list of package

model keywords. Note that the actual package models can be in a separate

<package_file_name>.pkg file or can exist in the .ibs files between the [Define Package Model] ...

[End Package Model] keywords for each package model that is defined. For reference, these

keywords are listed in Table 15. Full descriptions follow. EDA tools that do not support these

keywords will ignore all entries between the [Define Package Model] and [End Package Model]

keywords.

Table 15 – Package Modeling Keywords

Keyword Notes

[Define Package Model] Required if the [Package Model] keyword is used

[Manufacturer] (note 1)

[OEM] (note 1)

[Description] (note 1)

[Number Of Sections] (note 2)

[Number Of Pins] (note 1)

[Pin Numbers] (note 1)

[Model Data] (note 2)

[Resistance Matrix] Optional when [Model Data] is used

[Inductance Matrix] (note 3)

[Capacitance Matrix] (note 3)

[Bandwidth] Required (for Banded_matrix matrices only)

[Row] (note 3)

[End Model Data] (note 2)

[End Package Model] (note 1)

Note 1 Required when the [Define Package Model] keyword is used

Note 2 Either the [Number Of Sections] or the [Model Data]/[End Model Data] keywords are

required. Note that [Number of Sections] and the [Model Data]/[End Model Data]

IBIS Version 6.0

138

Keyword Notes

keywords are mutually exclusive.

Note 3 Required when the [Define Package Model] keyword is used and the [Number Of Sections]

keyword is not used.

When package model definitions occur within a .ibs file, their scope is “local”—they are known

only within that .ibs file and no other. In addition, within that .ibs file, they override any globally

defined package models that have the same name.

Usage Rules for the .Pkg File:

Package models are stored in a file whose name looks like:

<filename>.pkg.

The <filename> provided must adhere to the rules given in Section 3, "GENERAL SYNTAX

RULES AND GUIDELINES". Use the “.pkg” extension to identify files containing package

models. The .pkg file must contain all of the required elements of a normal .ibs file, including

[IBIS Ver], [File Name], [File Rev], and the [End] keywords. Optional elements include the [Date],

[Source], [Notes], [Disclaimer], [Copyright], and [Comment Char] keywords. All of the elements

follow the same rules as those for a normal .ibs file.

Note that the [Component] and [Model] keywords are not allowed in the .pkg file. The .pkg file is

for package models only.

Keyword: [Define Package Model]

Required: Yes

Description: Marks the beginning of a package model description.

Usage Rules: If the .pkg file contains data for more than one package, each section must begin

with a new [Define Package Model] keyword. The length of the package model name must not

exceed 40 characters in length. Blank characters are allowed. For every package model name

defined under the [Package Model] keyword, there must be a matching [Define Package Model]

keyword.

Example:

[Define Package Model] QS-SMT-cer-8-pin-pkgs

Keyword: [Manufacturer]

Required: Yes

Description: Declares the manufacturer of the component(s) that use this package model.

Usage Rules: The length of the manufacturer’s name must not exceed 40 characters (blank

characters are allowed, e.g., Texas Instruments). In addition, each manufacturer must use a

consistent name in all .ibs and .pkg files.

IBIS Version 6.0

139

Example:

[Manufacturer] Quality Semiconductors Ltd.

Keyword: [OEM]

Required: Yes

Description: Declares the manufacturer of the package.

Usage Rules: The length of the manufacturer’s name must not exceed 40 characters (blank

characters are allowed). In addition, each manufacturer must use a consistent name in all .ibs

and .pkg files.

Other Notes: This keyword is useful if the semiconductor vendor sells a single IC in packages

from different manufacturers.

Example:

[OEM] Acme Packaging Co.

Keyword: [Description]

Required: Yes

Description: Provides a concise yet easily human-readable description of what kind of package

the [Package Model] is representing.

Usage Rules: The description must be less than 60 characters in length, must fit on a single line,

and may contain spaces.

Example:

[Description] 220-Pin Quad Ceramic Flat Pack

Keyword: [Number Of Sections]

Required: No

Description: Defines the maximum number of sections that make up a “package stub”. A

package stub is defined as the connection between the die pad and the corresponding package pin;

it can include (but is not limited to) the bondwire, the connection between the bondwire and pin,

and the pin itself. This keyword must be used if a modeler wishes to describe any package stub as

other than a single, lumped L/R/C. The sections of a package stub are assumed to connect to each

other in a series fashion.

Usage Rules: The argument is a positive integer greater than zero. This keyword, if used, must

appear in the specification before the [Pin Numbers] keyword. The maximum number of sections

includes sections between the Fork and Endfork subparameters.

Example:

[Number Of Sections] 3

IBIS Version 6.0

140

Keyword: [Number Of Pins]

Required: Yes

Description: Tells the parser how many pins to expect.

Usage Rules: The field must be a positive decimal integer. The [Number Of Pins] keyword must

be positioned before the [Pin Numbers] keyword.

Example:

[Number Of Pins] 128

Keyword: [Pin Numbers]

Required: Yes

Description: Tells the parser the set of names that are used for the package pins and also defines

pin ordering. If the [Number Of Sections] keyword is present it also lists the elements for each

section of a pin’s die to pin connection.

Sub-Params: Len, L, R, C, Fork, Endfork

Usage Rules: Following the [Pin Numbers] keyword, the names of the pins are listed. There must

be as many names listed as there are pins (as given by the preceding [Number Of Pins] keyword).

Pin names cannot exceed 5 characters in length. The first pin name given is the “lowest” pin, and

the last pin given is the “highest.” If the [Number Of Sections] keyword is used then each pin

name must be followed by one or more of the legal subparameter combinations listed below. If the

[Number Of Sections] keyword is not present then subparameter usage is NOT allowed.

Subparameters:

The Len, L, R, and C subparameters specify the length, inductance, capacitance and resistance of

each section of each stub on a package.

The Fork and Endfork subparameters are used to denote branches from the main package stub.

Len The length of a package stub section. Lengths are given in terms of arbitrary “units”.

L The inductance of a package stub section, in terms of henries/unit length. For

example, if the total inductance of a section is 3.0nH and the length of the section is

2 “units”, the inductance would be listed as L = 1.5nH (i.e., 3.0 / 2).

C The capacitance of a package stub section, in terms of farads/unit length.

R The DC (ohmic) resistance of a package stub section, in terms of ohms/unit length.

Fork This subparameter indicates that the sections following (up to the Endfork

subparameter) are part of a branch off of the main package stub. This subparameter

has no arguments.

Endfork This subparameter indicates the end point of a branch. For every Fork subparameter

there must be a corresponding Endfork subparameter. As with the Fork

subparameter, the Endfork subparameter has no arguments.

Specifying a Len or L/R/C value of zero is allowed. If Len = 0 is specified, then the L/R/C values

are the total for that section. If a non-zero length is specified, then the total L/R/C for a section is

calculated by multiplying the value of the Len subparameter by the value of the L, R, or C

IBIS Version 6.0

141

subparameter. However, if a non-zero length section is specified, the L and C for that section

should be treated as distributed elements.

Using The Subparameters to Describe Package Stub Sections:

A section description begins with the Len subparameter and ends with the slash (/) character. The

value of the Len, L, R, and C subparameters and the subparameter itself are separated by an equals

sign (=); white space around the equals sign is optional. The Fork and Endfork subparameters are

placed between section descriptions (i.e., between the concluding slash of one section and the “Len”

parameter that starts another). A particular section description can contain no data (i.e., the

description is given as “Len = 0 /”).

Legal Subparameter Combinations for Section Descriptions:

A) A single Len = 0 subparameter, followed by a slash. This is used to describe a section with

no data.

B) Len, and one or more of the L, R, and C subparameters. If the Len subparameter is given as

zero, then the L/R/C subparameters represent lumped elements. If the Len subparameter is non-

zero, then the L/R/C subparameters represent distributed elements.

C) Single Fork or Endfork subparameter. Normally, a package stub is described as several

sections, with the Fork and Endfork subparameters surrounding a group of sections in the middle of

the complete package stub description. However, it is legal for the Fork/Endfork subparameters to

appear at the end of a section description. The package pin is connected to the last section of a

package stub description not surrounded by the Fork/Endfork statements. See the examples below.

Package Stub Boundaries:

A package stub description starts at the connection to the die and ends at the point at which the

package pin interfaces with the board or substrate the IC package is mounted on. Note that in the

case of a component with through-hole pins, the package stub description should include only the

portion of the pin not physically inserted into the board or socket. However, it is legal for a package

stub description to include both the component and socket together if this is how the component is

intended to be used.

Examples:

| A three-section package stub description that includes a bond wire (lumped

| inductance), a trace (treated as a transmission line with DC resistance),

| and a pin modeled as a lumped L/C element.

|

[Pin Numbers]

A1 Len=0 L=1.2n/ Len=1.2 L=2.0n C=0.5p R=0.05/ Len=0 L=2.0n C=1.0p/

|

| Pin A2 below has a section with no data

|

A2 Len=0 L=1.2n/ Len=0/ Len=1.2 L=2.0n C=0.5p R=0.05/ Len=0 L=2.0n C=1.0p/

|

| A section description using the Fork and Endfork subparameters. Note that

| the indentation of the Fork and Endfork subparameters are for readability

| are not required.

|

A1 Len=0 L=2.3n / | bondwire

Len=1.2 L=1.0n C=2.5p / | first section

 Fork | indicates the starting of a branch

 Len=1.0 L=2.0n C=1.5p / | section

IBIS Version 6.0

142

 Endfork | ending of the branch

Len=0.5 L=1.0 C=2.5p/ | second section

Len=0.0 L=1.5n / | pin

|

| Here is an example where the Fork/Endfork subparameters are at the end of a

| package stub description.

|

B13 Len=0 L=2.3n / | bondwire

Len=1.2 L=1.0n C=2.5p / | first section

Len=0.5 L=1.0 C=2.5/ | second section, pin connects here

Fork | indicates the starting of a branch

Len=1.0 L=2.0n C=1.5p / | section

Endfork | ending of the branch

Keyword: [Model Data]

Required: Yes

Description: Indicates the beginning of the formatted package model data, that can include the

[Resistance Matrix], [Inductance Matrix], [Capacitance Matrix], [Bandwidth], and [Row] keywords.

Example:

[Model Data]

Keyword: [End Model Data]

Required: Yes

Description: Indicates the end of the formatted model data.

Other Notes: In between the [Model Data] and [End Model Data] keywords is the package model

data itself. The data is a set of three matrices: the resistance (R), inductance (L), and capacitance

(C) matrices. Each matrix can be formatted differently (see below). Use one of the matrix

keywords below to mark the beginning of each new matrix.

Example:

[End Model Data]

Keywords: [Resistance Matrix], [Inductance Matrix], [Capacitance Matrix]

Required: [Resistance Matrix] is optional. If it is not present, its entries are assumed to be

zero. [Inductance Matrix] and [Capacitance Matrix] are required.

Sub-Params: Banded_matrix, Sparse_matrix, or Full_matrix

Description: The subparameters mark the beginning of a matrix, and specify how the matrix data

is formatted. See Figure 31.

Usage Rules: For each matrix keyword, use only one of the subparameters. After each of these

subparameters, insert the matrix data in the appropriate format (these formats are described in detail

below).

IBIS Version 6.0

143

Other Notes: The resistance, inductance, and capacitance matrices are also referred to as “RLC

matrices” within this specification.

When measuring the entries of the RLC matrices, either with laboratory equipment or field-solver

software, currents are defined as ENTERING the pins of the package from the board (rule #11 in

Section 3, “GENERAL SYNTAX RULES AND GUIDELINES”). The corresponding voltage

drops are to be measured with the current pointing “in” to the “+” sign and “out” of the “-” sign.

Pkg

I1 I2

board board
+ V1 - - V2 +

Figure 31 - Package Matrix Voltage Polarities and Current Directions

It is important to observe this convention in order to get the correct signs for the mutual

inductances and resistances.

Example:

[Resistance Matrix] Banded_matrix

[Inductance Matrix] Sparse_matrix

[Capacitance Matrix] Full_matrix

RLC Matrix Notes:

For each [Resistance Matrix], [Inductance Matrix], or [Capacitance Matrix], a different format can

be used for the data. The choice of formats is provided to satisfy different simulation accuracy and

speed requirements.

Also, there are many packages in which the resistance matrix can have no coupling terms at all. In

this case, the most concise format (Banded_matrix) can be used.

There are two different ways to extract the coefficients that are reported in the capacitance and

inductance matrices. For the purposes of this specification, the coefficients reported in the

capacitance matrices shall be the “electrostatic induction coefficients” or “Maxwell’s capacitances”.

The Maxwell capacitance Kij is defined as the charge induced on conductor “j” when conductor “i”

is held at 1 volt and all other conductors are held at zero volts. Note that Kij (when i /= j) will be a

negative number and should be entered as such. Likewise, for the inductance matrix the

coefficients for Lij are defined as the voltage induced on conductor “j” when conductor “i”’s

current is changed by 1 amp/sec and all other conductors have no current change.

One common aspect of all the different formats is that they exploit the symmetry of the matrices

they describe. This means that the entries below the main diagonal of the matrix are identical to

the corresponding entries above the main diagonal. Therefore, only roughly one-half of the matrix

needs to be described. By convention, the main diagonal and the UPPER half of the matrix are

provided.

In the following text, we use the notation [I, J] to refer to the entry in row I and column J of the

matrix. Note that I and J are allowed to be alphanumeric strings as well as integers. An ordering of

these strings is defined in the [Pin Numbers] section. In the following text, “Row 1” means the row

corresponding to the first pin.

IBIS Version 6.0

144

Also note that the numeric entries of the RLC matrices are standard IBIS floating point numbers.

As such, it is permissible to use multiplier “suffix” notation. Thus, an entry of the C matrix could

be given as 1.23e-12 or as 1.23p or 1.23pF.

Full_matrix:

When the Full_matrix format is used, the couplings between every pair of elements are specified

explicitly. Assume that the matrix has N rows and N columns. The Full_matrix is specified one

row at a time, starting with Row 1 and continuing down to Row N.

Each new row is identified with the Row keyword.

Keyword: [Row]

Required: Yes

Description: Indicates the beginning of a new row of the matrix.

Usage Rules: The argument must be one of the pin names listed under the [Pin Numbers] keyword.

Example:

[Row] 3

Following a [Row] keyword is a block of numbers that represent the entries for that row. Suppose

that the current row is number M. Then the first number listed is the diagonal entry, [M,M].

Following this number are the entries of the upper half of the matrix that belong to row M: [M,

M+1], [M, M+2], ... up to [M,N].

For even a modest-sized package, this data will not all fit on one line. You can break the data up

with new-line characters so that the 120 character line length limit is observed.

An example: suppose the package has 40 pins and that we are currently working on Row 19. There

is 1 diagonal entry, plus 40 - 19 = 21 entries in the upper half of the matrix to be specified, for 22

entries total. The data might be formatted as follows:

[Row] 19

5.67e-9 1.1e-9 0.8e-9 0.6e-9 0.4e-9 0.2e-9 0.1e-9 0.09e-9

8e-10 7e-10 6e-10 5e-10 4e-10 3e-10 2e-10 1e-10

9e-11 8e-11 7e-11 6e-11 5e-11 4e-11

In the above example, the entry 5.67e-9 is on the diagonal of row 19.

Observe that Row 1 always has the most entries, and that each successive row has one fewer entry

than the last; the last row always has just a single entry.

Banded_matrix:

A Banded_matrix is one whose entries are guaranteed to be zero if they are farther away from the

main diagonal than a certain distance, known as the “bandwidth.” Let the matrix size be N x M,

and let the bandwidth be B. An entry [I,J] of the matrix is zero if:

| I - J | > B

where |.| denotes the absolute value.

IBIS Version 6.0

145

The Banded_matrix is used to specify the coupling effects up to B pins on either side. Two

variations are supported. One allows for the coupling to circle back on itself. This is technically a

simple form of a bordered block diagonal matrix. However, its data can be completely specified in

terms of a Banded_matrix for an N x M matrix consisting of N rows and M = N + B columns. The

second variation is just in terms of an N x N matrix where no circle back coupling needs to be

specified.

The bandwidth for a Banded_matrix must be specified using the [Bandwidth] keyword.

Keyword: [Bandwidth]

Required: Yes (for Banded_matrix matrices only)

Description: Indicates the bandwidth of the matrix.

Usage Rules: The bandwidth field must be a non-negative integer. This keyword must occur after

the [Resistance Matrix], etc., keywords, and before the matrix data is given.

Example:

[Bandwidth] 10

Specify the banded matrix one row at a time, starting with row 1 and working up to higher rows.

Mark each row with the [Row] keyword, as above. As before, symmetry is exploited: do not

provide entries below the main diagonal.

For the case where coupling can circle back on itself, consider a matrix of N pins organized into N

rows, 1 ... N, and M columns, 1 ... N, 1 ... B. The first row only needs to specify the entries [1,1]

through [1,1+B] since all other entries are guaranteed to be zero. The second row will need to

specify the entries [2,2] through [2,2+B], and so on. For row K, the entries [K,K] through [K,K+B]

are given when K + B is less than or equal to the size of the matrix N. When K + B exceeds N, the

entries in the last columns, 1 ... B, specify the coupling to the first rows. For row K, the entries

[K,K] ... [K,N] [K,1] ... [K,R] are given where R = mod(K + B - 1, N) + 1. All rows will contain B

+ 1 entries. To avoid redundant entries, the bandwidth is limited to B <= int((N - 1) / 2).

For the case where coupling does not circle back on itself, the process is modified. Only N

columns need to be considered. When K + B finally exceeds the size of the matrix N, the number

of entries in each row starts to decrease; the last row (row N) has only 1 entry. This construction

constrains the bandwidth to B < N.

As in the Full_matrix, if all the entries for a particular row do not fit into a single 120-character line,

the entries can be broken across several lines.

It is possible to use a bandwidth of 0 to specify a diagonal matrix (a matrix with no coupling terms.)

This is sometimes useful for resistance matrices.

Sparse_matrix:

A Sparse_matrix is expected to consist mostly of zero-valued entries, except for a few nonzeros.

Unlike the Banded_matrix, there is no restriction on where the nonzero entries can occur. This

feature is useful in certain situations, such as for Pin Grid Arrays (PGAs).

As usual, symmetry can be exploited to reduce the amount of data by eliminating from the matrix

any entries below the main diagonal.

IBIS Version 6.0

146

An N x N Sparse_matrix is specified one row at a time, starting with row 1 and continuing down to

row N. Each new row is marked with the [Row] keyword, as in the other matrix formats.

Data for the entries of a row is given in a slightly different format, however. For the entry [I, J] of

a row, it is necessary to explicitly list the name of pin J before the value of the entry is given. This

specification serves to indicate to the parser where the entry is put into the matrix.

The proper location is not otherwise obvious because of the lack of restrictions on where nonzeros

can occur. Each (Index, Value) pair is listed upon a separate line. An example follows. Suppose

that row 10 has nonzero entries [10,10], [10,11], [10,15], and [10,25]. The following row data

would be provided:

[Row] 10

| Index Value

10 5.7e-9

11 1.1e-9

15 1.1e-9

25 1.1e-9

Note that each of the column indices listed for any row must be greater than or equal to the row

index, because they always come from the upper half of the matrix. When alphanumeric pin names

are used, special care must be taken to ensure that the ordering defined in the [Pin Numbers]

section is observed.

With this convention, please note that the Nth row of an N x N matrix has just a single entry (the

diagonal entry).

Keyword: [End Package Model]

Required: Yes

Description: Marks the end of a package model description.

Usage Rules: This keyword must come at the end of each complete package model description.

Optionally, add a comment after the [End Package Model] keyword to clarify which package

model has just ended. For example,

[Define Package Model] My_Model

|

| ... content of model ...

|

[End Package Model] | end of My_Model

Example:

[End Package Model]

Package Model Example

The following is an example of a package model file following the package modeling

specifications. For the sake of brevity, an 8-pin package has been described. For purposes of

illustration, each of the matrices is specified using a different format.

IBIS Version 6.0

147

Example:

[IBIS Ver] 6.0

[File Name] example.pkg

[File Rev] 0.1

[Date] September 20, 2013

[Source] Quality Semiconductors. Data derived from Helmholtz Inc.'s

 field solver using 3-D model from Acme Packaging.

[Notes] Example of couplings in packaging

[Disclaimer] The models given below may not represent any physically

 realizable 8-pin package. They are provided solely for the

 purpose of illustrating the .pkg file format.

|

|===

|

[Define Package Model] QS-SMT-cer-8-pin-pkgs

[Manufacturer] Quality Semiconductors Ltd.

[OEM] Acme Package Co.

[Description] 8-Pin ceramic SMT package

[Number Of Pins] 8

|

[Pin Numbers]

1

2

3

4

5

6

7

8

|

[Model Data]

|

| The resistance matrix for this package has no coupling

|

[Resistance Matrix] Banded_matrix

[Bandwidth] 0

[Row] 1

10.0

[Row] 2

15.0

[Row] 3

15.0

[Row] 4

10.0

[Row] 5

10.0

[Row] 6

15.0

[Row] 7

15.0

[Row] 8

10.0

|

| The inductance matrix has loads of coupling

|

IBIS Version 6.0

148

[Inductance Matrix] Full_matrix

[Row] 1

3.04859e-07 4.73185e-08 1.3428e-08 6.12191e-09

1.74022e-07 7.35469e-08 2.73201e-08 1.33807e-08

[Row] 2

3.04859e-07 4.73185e-08 1.3428e-08 7.35469e-08

1.74022e-07 7.35469e-08 2.73201e-08

[Row] 3

3.04859e-07 4.73185e-08 2.73201e-08 7.35469e-08

1.74022e-07 7.35469e-08

[Row] 4

3.04859e-07 1.33807e-08 2.73201e-08 7.35469e-08

1.74022e-07

[Row] 5

4.70049e-07 1.43791e-07 5.75805e-08 2.95088e-08

[Row] 6

4.70049e-07 1.43791e-07 5.75805e-08

[Row] 7

4.70049e-07 1.43791e-07

[Row] 8

4.70049e-07

|

| The capacitance matrix has sparse coupling

|

[Capacitance Matrix] Sparse_matrix

[Row] 1

1 2.48227e-10

2 -1.56651e-11

5 -9.54158e-11

6 -7.15684e-12

[Row] 2

2 2.51798e-10

3 -1.56552e-11

5 -6.85199e-12

6 -9.0486e-11

7 -6.82003e-12

[Row] 3

3 2.51798e-10

4 -1.56651e-11

6 -6.82003e-12

7 -9.0486e-11

8 -6.85199e-12

[Row] 4

4 2.48227e-10

7 -7.15684e-12

8 -9.54158e-11

[Row] 5

5 1.73542e-10

6 -3.38247e-11

[Row] 6

6 1.86833e-10

7 -3.27226e-11

[Row] 7

7 1.86833e-10

8 -3.38247e-11

[Row] 8

8 1.73542e-10

IBIS Version 6.0

149

|

[End Model Data]

[End Package Model]

|

IBIS Version 6.0

150

8 ELECTRICAL BOARD DESCRIPTION

INTRODUCTION

A “board level component” is the generic term to be used to describe a printed circuit board (PCB)

or substrate which can contain components or even other boards, and which can connect to another

board through a set of user visible pins. The electrical connectivity of such a board level

component is referred to as an “Electrical Board Description”. For example, a SIMM module is a

board level component that is used to attach several DRAM components on the PCB to another

board through edge connector pins. An electrical board description file (a .ebd file) is defined to

describe the connections of a board level component between the board pins and its components on

the board.

A fundamental assumption regarding the electrical board description is that the inductance and

capacitance parameters listed in the file are derived with respect to well-defined reference plane(s)

within the board. Also, this current description does not allow one to describe electrical (inductive

or capacitive) coupling between paths. It is recommended that if coupling is an issue, then an

electrical description be extracted from the physical parameters of the board.

What is, and is not, included in an Electrical Board Description is defined by its boundaries. For

the definition of the boundaries, see the Description section under the [Path Description] Keyword.

Usage Rules:

A .ebd file is intended to be a stand-alone file, not referenced by or included in any .ibs or .pkg file.

Electrical Board Descriptions are stored in a file whose name looks like <filename>.ebd, where

<filename> must conform to the naming rules given in Section 3 of this specification. The .ebd

extension is mandatory.

Contents:

An .ebd file is structured similar to a standard .ibs file. It must contain the following keywords, as

defined in IBIS: [IBIS Ver], [File Name], [File Rev], and [End]. It may also contain the following

optional keywords: [Comment Char], [Date], [Source], [Notes], [Disclaimer], and [Copyright].

The actual board description is contained between the keywords [Begin Board Description] and

[End Board Description], and includes the keywords listed below:

[Begin Board Description]

[Manufacturer]

[Number Of Pins]

[Pin List]

[Path Description]

[Reference Designator Map]

[End Board Description]

More than one [Begin Board Description]/[End Board Description] keyword pair is allowed in

a .ebd file.

KEYWORD DEFINITIONS

Keyword: [Begin Board Description]

Required: Yes

Description: Marks the beginning of an Electrical Board Description.

IBIS Version 6.0

151

Usage Rules: The keyword is followed by the name of the board level component. If the .ebd file

contains more than one [Begin Board Description] keyword, then each name must be unique. The

length of the component name must not exceed 40 characters in length, and blank characters are

allowed. For every [Begin Board Description] keyword there must be a matching [End Board

Description] keyword.

Example:

[Begin Board Description] 16Meg X 8 SIMM Module

Keyword: [Manufacturer]

Required: Yes

Description: Declares the manufacturer of the components(s) that use this .ebd file.

Usage Rules: Following the keyword is the manufacturer’s name. It must not exceed 40

characters, and can include blank characters. Each manufacturer must use a consistent name in

all .ebd files.

Example:

[Manufacturer] Quality SIMM Corp.

Keyword: [Number Of Pins]

Required: Yes

Description: Tells the parser the number of pins to expect. Pins are any externally accessible

electrical connection to the component.

Usage Rules: The field must be a positive decimal integer. Note: The simulator must not limit the

Number Of Pins to any value less than 1,000. The [Number Of Pins] keyword must be positioned

before the [Pin List] keyword.

Example:

[Number Of Pins] 128

Keyword: [Pin List]

Required: Yes

Description: Tells the parser the pin names of the user accessible pins. It also informs the parser

which pins are connected to power and ground.

Sub-Params: signal_name

Usage Rules: Following the [Pin List] keyword are two columns. The first column lists the pin

name while the second lists the data book name of the signal connected to that pin. There must be

as many pin_name/signal_name rows as there are pins given by the preceding [Number Of Pins]

keyword. Pin names must be the alphanumeric external pin names of the part. The pin names

cannot exceed eight characters in length. Any pin associated with a signal name that begins with

“GND” or “POWER” will be interpreted as connecting to the boards ground or power plane. In

IBIS Version 6.0

152

addition, NC is a legal signal name and indicates that the Pin is a “no connect”. As per the IBIS

standard “GND,” “POWER,” and “NC” are case insensitive.

Example:

| A SIMM Board Example:

|

[Pin List] signal_name

 A1 GND

 A2 data1

 A3 data2

 A4 POWER5 | This pin connects to 5 V

 A5 NC | a no connect pin

| .

| .

 A22 POWER3.3 | This pin connects to 3.3 V

 B1 casa

| .

| .

|etc.

Keyword: [Path Description]

Required: Yes

Description: This keyword allows the user to describe the connection between the user accessible

pins of a board level component and other pins or pins of the ICs mounted on that board. Each pin

to node connection is divided into one or more cascaded “sections,” where each section is

described in terms of its L/R/C per unit length. The Fork and Endfork subparameters allow the

path to branch to multiple nodes, or another pin. A path description is required for each pin whose

signal name is not “GND,” “POWER,” or “NC.”

Board Description and IC Boundaries:

In any system, each board level component interfaces with another board level component at some

boundary. Every electrical board description must contain the components necessary to represent

the behavior of the board level component being described within its boundaries. The boundary

definition depends upon the board level component being described.

For CARD EDGE CONNECTIONS such as a SIMM or a PC Daughter Card plugged into a SIMM

Socket or Edge Connector, the boundary should be at the end of the board card edge pads as they

emerge from the connector.

For any THROUGH-HOLE MOUNTED COMPONENT, the boundary will be at the surface of the

board on which the component is mounted.

SURFACE MOUNTED COMPONENT models end at the outboard end of their recommended

surface mount pads.

If the board level component contains an UNMATED CONNECTOR, the unmated connector will

be described in a separate file, with its boundaries being as described above for the through-hole or

surface mounted component.

Sub-Params: Len, L, R, C, Fork, Endfork, Pin, Node

IBIS Version 6.0

153

Usage Rules: Each individual connection path (user pin to node(s)) description begins with the

[Path Description] keyword and a path name, followed by the subparameters used to describe the

path topology and the electrical characteristics of each section of the path. The path name must not

exceed 40 characters, blanks are not allowed, and each occurrence of the [Path Description]

keyword must be followed by a unique path name. Every signal pin (pins other than POWER,

GND or NC) must appear in one and only one path description per [Begin Board Description]/[End

Board Description] pair. Pin names do not have to appear in the same order as listed in the [Pin

List] table. The individual subparameters are broken up into those that describe the electrical

properties of a section, and those that describe the topology of a path.

Section Description Subparameters:

The Len, L, R, and C subparameters specify the length, the series inductance, resistance, and the

capacitance to ground of each section in a path description.

Len The physical length of a section. Lengths are given in terms of arbitrary “units”. Any

non-zero length requires that the parameters that follow must be interpreted as

distributed elements by the simulator.

L The series inductance of a section, in terms of henries/unit length. For example, if the

total inductance of a section is 3.0 nH and the length of the section is 2 “units”, the

inductance would be listed as L = 1.5nH (i.e., 3.0 / 2).

C The capacitance to ground of a section, in terms of farads/unit length.

R The series DC (ohmic) resistance of a section, in terms of ohms/unit length.

Topology Description Subparameters:

The Fork and Endfork subparameters denote branches from the main pin-to-node or pin-to-pin

connection path. The Node subparameter is used to reference the pin of a component or board as

defined in a .ibs or .ebd file. The Pin subparameter is used to indicate the point at which a path

connects to a user visible pin.

Fork This subparameter indicates that the sections following (up to the Endfork

subparameter) are part of a branch off of the main connection path. This

subparameter has no arguments.

Endfork This subparameter indicates the end point of a branch. For every Fork subparameter

there must be a corresponding Endfork subparameter. As with the Fork

subparameter, the Endfork subparameter has no arguments. The Fork and Endfork

parameters must appear on separate lines.

Node reference_designator.pin

This subparameter is used when the connection path connects to a pin of another,

externally defined component. The arguments of the Node subparameter indicate

the pin and reference designator of the external component. The pin and reference

designator portions of the argument are separated by a period (“.”). The reference

designator is mapped to an external component description (another .ebd file or .ibs

file) by the [Reference Designator Map] Keyword. Note that a Node MUST

reference a model of a passive or active component. A Node is not an arbitrary

connection point between two elements or paths.

Pin This subparameter is used to mark the point at which a path description connects to

a user accessible pin. Every path description must contain at least one occurrence of

the Pin subparameter. It may also contain the reserved word NC. The value of the

Pin subparameter must be one of the pin names listed in the [Pin List] section.

IBIS Version 6.0

154

Note: The reserved word NC can also be used in path descriptions in a similar manner as the

subparameters in order to terminate paths. This usage is optional.

Using the Subparameters to Describe Paths:

A section description begins with the Len subparameter and ends with the slash (/) character. The

value of the Len, L, R, and C subparameters and the subparameter itself are separated by an equals

sign (=); white space around the equals sign is optional. The Fork, Endfork, Node, and Pin

subparameters are placed between section descriptions (i.e., between the concluding slash of one

section and the “Len” parameters that starts another). The arguments of the Pin and Node

subparameter are separated by white space.

Specifying a Len or L/R/C value of zero is allowed. If Len = 0 is specified, then the L/R/C values

are the total for that section. If a non-zero length is specified, then the total L/R/C for a section is

calculated by multiplying the value of the Len subparameter by the value of the L, R, or C

subparameter. However, as noted below, if a non-zero length is specified, that section MUST be

interpreted as distributed elements.

Legal Subparameter Combinations for Section Descriptions:

A) Len, and one or more of the L, R and C subparameters. If the Len subparameter is given as

zero, then the L/R/C subparameters represent lumped elements. If the Len subparameter is non-

zero, then the L/R/C subparameters represent distributed elements and both L and C must be

specified, R is optional. The segment Len/ must not be split; the whole segment must be on one

line.

B) The first subparameter following the [Path Description] keyword must be “Pin”, followed

by one or more section descriptions. The path description can terminate in a Node, another pin or

the reserved word, NC. However, NC may be optionally omitted.

Dealing With Series Elements:

A discrete series R or L component can be included in a path description by defining a section with

Len=0 and the proper R or L value. A discrete series component can also be included in a path

description by writing node statements that reference the same component. This can be done as

two back to back node statements for a series component within a single [Path Description]. It is

also allowed to insert a series component between two branches of a single [Path Description], or

even between two separate [Path Description]s (see the examples below).

When a series component is modeled with node statements and reference designator.pin arguments,

the references pin models can be Series or Series_switch. The following models are supported: [R

Series], [L Series], [C Series], [Rl Series], [Lc Series], [Rc Series], [Series Current], and [Series

MOSFET].

Examples:

An Example Path for a SIMM Module (see Figure 32):

|

[Path Description] CAS_2

Pin J25

Len = 0.5 L=8.35n C=3.34p R=0.01 /

Node u21.15

Len = 0.5 L=8.35n C=3.34p R=0.01 /

Node u22.15

Len = 0.5 L=8.35n C=3.34p R=0.01 /

Node u23.15

IBIS Version 6.0

155

Pin15

U21

J25
Len=0.5 Len=0.5 Len=0.5

Pin15

U22

Pin15

U23

Figure 32 - SIMM Package Path Example

A Description Using The Fork and Endfork Subparameters (see Figure 33):

|

[Path Description] PassThru1

Pin B5

Len = 0 L=2.0n /

Len = 2.1 L=6.0n C=2.0p /

 Fork

 Len = 1.0 L = 1.0n C= 2.0p /

 Node u23.16

 Endfork

Len = 1.0 L = 6.0n C=2.0p /

Pin A5

|

IBIS Version 6.0

156

A5

2 nH

Len=1.0

Len=2.1

Pin16

U23

B5

Len=1.0

Figure 33 - Fork and Endfork in [Path Description]

A Description Including a Discrete Series Element (see Figure 34):

|

[Path Description] sig1

Pin B27

Len = 0 L=1.6n /

Len = 1.5 L=6.0n C=2.0p /

Node R2.1

Node R2.2

Len = 0.25 L=6.0n C=2.0p /

Node U25.6

1.6 nH Len=1.5

Pin Pin
 1 2
 R2

Pin16

U25

B27

Len=0.25

Figure 34 – Discrete Series Element in [Path Description]

A path including series passive components (C17, R21) between branches forming a differential

termination (see Figure 35):

IBIS Version 6.0

157

[Path Description] CLK

Pin 137

Len=1.1 L=1n C=0.4p /

Node C17.1 | Pin 1 of Series C17

Len=1.2 L=1n C=0.4p /

Node R21.1 | Series R21 Pin 1 and 2 connections

Node R21.2

Len=1.3 L=1n C=0.4p /

Node C17.2 | Pin 2 of Series C17

Len=1.4 L=1n C=0.4p

Pin 138

137
Len=1.1 Len=1.2

Len=1.4 Len=1.3

Pin 1

C17

Pin 2

Pin 1

R21

Pin 2

138

Figure 35 – Series Passive Components as Differential Termination

Two paths connected by series resistors (R8, R9) used as differential termination between

components:

[Path Description] DP+

Pin 20

Len=1 L=1n C=0.4p /

Fork

 Len=1.1 L=1n C=0.4p /

 Fork

 Node P8.D7

 Endfork

 Len=1.2 L=1n C=0.4p /

 Node R8.1 | Pin 1 of Series R8

Endfork

Len=1.3 L=1n C=0.4p /

Fork

 Len=1.4 L=1n C=0.4p /

 Node P8.D5

Endfork

Len=1.5 L=1n C=0.4p /

Node R9.1 | Pin 1 of Series R9

IBIS Version 6.0

158

Other path(s):

[Path Description] DP-

Pin 22

Len=1 L=1n C=0.4p /

Fork

 Len=1.1 L=1n C=0.4p /

 Fork

 Node Q8.D7

 Endfork

 Len=1.2 L=1n C=0.4p /

 Node R8.2 | Pin 2 of Series R8

Endfork

Len=1.3 L=1n C=0.4p /

Fork

 Len=1.4 L=1n C=0.4p /

 Node Q8.D5

Endfork

Len=1.5 L=1n C=0.4p /

Node R9.2 | Pin 2 of Series R9

20

Len=1 Len=1.2

Pin

P8.D7

Pin 1

R8

Pin 2

22

Len=1.3

Len=1.1

Len=1.4

Len=1.5

Pin

P8.D5

Len=1.5

Len=1.4

Len=1.3

Len=1.2Len=1.1

Pin

Q8.D7

Pin

Q8.D5

Len=1

Pin 1

R9

Pin 2

Figure 36 – Paths Connected by Series Resistors as Differential Terminators

IBIS Version 6.0

159

Keyword: [Reference Designator Map]

Required: Yes, if any of the path descriptions use the Node subparameter

Description: Maps a reference designator to a component or electrical board description

contained in a .ibs or .ebd file.

Usage Rules: The [Reference Designator Map] keyword must be followed by a list of all of the

reference designators called out by the Node subparameters used in the various path descriptions.

Each reference designator is followed by the name of the .ibs or .ebd file containing the electrical

description of the component or board, then the name of the component itself as given by the .ibs

or .ebd file’s [Component] or [Begin Board Description] keyword respectively. The reference

designator, file name and component name terms are separated by white space. By default the .ibs

or .ebd files are assumed to exist in the same directory as the calling .ebd file. It is legal for a

reference designator to point to a component that is contained in the calling .ebd file.

The reference designator is limited to ten characters.

Example:

[Reference Designator Map]

|

| External Part References:

|

| Ref Des File name Component name

u23 pp100.ibs Processor

u24 simm.ebd 16Meg X 36 SIMM Module

u25 ls244.ibs NoName 74LS244a

u26 r10K.ibs My_10K_Pullup

Keyword: [End Board Description]

Required: Yes

Description: Marks the end of an Electrical Interconnect Description.

Usage Rules: This keyword must come at the end of each complete electrical interconnect model

description.

Optionally, a comment may be added after the [End Electrical Description] keyword to clarify

which board model has ended.

Example:

[End Board Description] | End: 16Meg X 8 SIMM Module

Keyword: [End]

Required: Yes

Description: Defines the end of the .ibs, .pkg, or .ebd file.

Example:

[End]

IBIS Version 6.0

160

9 NOTES ON DATA DERIVATION METHOD

This section explains how data values are derived. It describes certain assumed parameter and

table extraction conditions if they are not explicitly specified. It also describes the allocation of

data into the “typ,” “min,” and “max” columns under variations of voltage, temperature, and

process.

The required “typ” column for all data represents typical operating conditions. For most [Model]

keyword data, the “min” column describes slow, weak performance, and the “max” column

describes the fast, strong performance. It is permissible to use slow, weak components or models

to derive the data for the “min” column, and to use fast, strong components or models to derive the

data in the “max” columns under the corresponding voltage and temperature derating conditions for

these columns. It is also permissible to use typical components or models derated by voltage and

temperature and optionally apply proprietary “X%” and “Y%” factors described later for further

derating. This methodology has the nice feature that the data can be derived either from

semiconductor vendor proprietary models, or typical component measurement over

temperature/voltage.

The voltage and temperature keywords and optionally the process models control the conditions

that define the “typ,” “min,” and “max” column entries for all I-V table keywords [Pulldown],

[Pullup], [GND Clamp], and [POWER Clamp]; all [Ramp] subparameters dV/dt_r and dV/dt_f;

and all waveform table keywords and subparameters [Rising Waveform], [Falling Waveform],

V_fixture, V_fixture_min, and V_fixture_max.

The voltage keywords that control the voltage conditions are [Voltage Range], [Pulldown

Reference], [Pullup Reference], [GND Clamp Reference], and [POWER Clamp Reference]. The

entries in the “min” columns contain the smallest magnitude voltages, and the entries in the “max”

columns contain the largest magnitude voltages.

The optional [Temperature Range] keyword will contain the temperature which causes or amplifies

the slow, weak conditions in the “min” column and the temperature which causes or amplifies the

fast, strong conditions in the “max” column. Therefore, the “min” column for [Temperature Range]

will contain the lowest value for bipolar models (TTL and ECL) and the highest value for CMOS

models. Default values described later are assumed if temperature is not specified.

The “min” and “max” columns for all remaining keywords and subparameters will contain the

smallest and largest magnitude values. This applies to the [Model] subparameter C_comp as well,

even if the correlation to the voltage, temperature, and process variations are known, because

information about such correlation is not available in all cases.

C_comp is considered an independent variable. This is because C_comp includes bonding pad

capacitance, which does not necessarily track fabrication process variations. The conservative

approach to using IBIS data will associate large C_comp values with slow, weak models, and the

small C_comp values with fast, strong models.

The default temperatures under which all I-V tables are extracted are provided below. The same

defaults also are stated for the [Ramp] subparameters, but they also apply for the waveform

keywords.

The stated voltage ranges for I-V tables cover the most common, single supply cases. When

multiple supplies are specified, the voltages shall extend similarly to values that handle practical

extremes in reflected wave simulations.

IBIS Version 6.0

161

For the [Ramp] subparameters, the default test load and voltages are provided. However, the test

load can be entered directly by the R_load subparameter. The allowable test loads and voltages for

the waveform keywords are stated by required and optional subparameters; no defaults are needed.

Even with waveform keywords, the [Ramp] keyword continues to be required so that the IBIS

model remains functional in situations which do not support waveform processing.

The following discussion lists test details and default conditions.

1) I-V Tables:

I-V tables for CMOS models:

typ = typical voltage, typical temp deg C, typical process

min = minimum voltage, max temp deg C, typical process, minus “X%”

max = maximum voltage, min temp deg C, typical process, plus “X%”

I-V tables for bipolar models:

typ = typical voltage, typical temp deg C, typical process

min = minimum voltage, min temp deg C, typical process, minus “X%”

max = maximum voltage, max temp deg C, typical process, plus “X%”

Nominal, min, and max temperature are specified by the semiconductor vendor. The default range

is 50 deg C nom, 0 deg C min, and 100 deg C max temperatures.

X% should be statistically determined by the semiconductor vendor based on numerous fab lots,

test chips, process controls, etc. The value of X need not be published in the .ibs file, and may

decrease over time as data on the I/O buffers and silicon process increases.

Temperatures are junction temperatures.

2) Voltage Ranges:

Points for each table must span the voltages listed in Table 16.

Table 16 – Voltage Ranges

Table Low Voltage High Voltage

[Pulldown] GND – POWER POWER + POWER

[Pullup] GND – POWER POWER + POWER

[GND Clamp] GND – POWER GND + POWER

[POWER Clamp] POWER POWER + POWER

[Series Current] GND – POWER GND + POWER

[Series MOSFET] GND GND + POWER

As described in the [Pulldown Reference] keyword section, the I-V tables of the [Pullup] and the

[POWER Clamp] structures are “Vcc relative”, using the equation:

Vtable = Vcc - Voutput

IBIS Version 6.0

162

For example, a model with a 5 V power supply voltage should be characterized between (0 - 5) = -5

V and (5 + 5) = 10 V; and a model with a 3.3 V power supply should be characterized between (0 -

3.3) = -3.3 V and (3.3 + 3.3) = 6.6 V for the [Pulldown] table.

When tabulating output data for ECL type models, the voltage points must span the range of Vcc to

Vcc - 2.2 V. This range applies to both the [Pullup] and [Pulldown] tables. Note that this range

applies ONLY when characterizing an ECL output.

These voltage ranges must be spanned by the IBIS data. Data derived from lab measurements may

not be able to span these ranges as such and so may need to be extrapolated to cover the full range.

This data must not be left for the simulator to provide.

3) Ramp Rates:

The following steps assume that the default load resistance of 50 ohms is used. There may be

models that will not drive a load of only 50 ohms into any useful level of dynamics. In these cases,

use the semiconductor vendor’s suggested (nonreactive) load and add the load subparameter to the

[Ramp] specification.

The ramp rate does not include packaging but does include the effects of the C_comp parameter; it

is the intrinsic output stage rise and fall time only.

The ramp rates (listed in AC characteristics below) should be derived as follows:

a. If starting with the silicon model, remove all packaging. If starting with a packaged model,

perform the measurements as outlined below. Then use whatever techniques are appropriate

to derive the actual, unloaded rise and fall times.

b. If: The Model_type is one of the following: Output, I/O, or 3-state (not open or ECL types);

Then: Attach a 50 ohm resistor to GND to derive the rising edge ramp. Attach a 50 ohm

resistor to POWER to derive the falling edge ramp.

If: The Model_type is Output_ECL, I/O_ECL, 3-state_ECL;

Then: Attach a 50 ohm resistor to the termination voltage (Vterm = VCC - 2 V). Use

this load to derive both the rising and falling edges.

If: The Model_type is either an Open_sink type or Open_drain type;

Then: Attach either a 50 ohm resistor or the semiconductor vendor suggested termination

resistance to either POWER or the suggested termination voltage. Use this load to

derive both the rising and falling edges.

If: The Model_type is an Open_source type;

Then: Attach either a 50 ohm resistor or the semiconductor vendor suggested termination

resistance to either GND or the suggested termination voltage. Use this load to

derive both the rising and falling edges.

c. Due to the resistor, output swings will not make a full transition as expected. However the

pertinent data can still be collected as follows:

1. Determine the 20% to 80% voltages of the 50 ohm swing.

2. Measure this voltage change as “dV”.

3. Measure the amount of time required to make this swing “dt”.

IBIS Version 6.0

163

d. Post the value as a ratio “dV/dt”. The simulator extrapolates this value to span the required

voltage swing range in the final model.

e. Typ, Min, and Max must all be posted, and are derived at the same extremes as the I-V

tables, which are:

Ramp rates for CMOS models:

typ = typical voltage, typical temp deg C, typical process

min = minimum voltage, max temp deg C, typical process, minus “Y%”

max = maximum voltage, min temp deg C, typical process, plus “Y%”

Ramp rates for bipolar models:

typ = typical voltage, typical temp deg C, typical process

min = minimum voltage, min temp deg C, typical process, minus “Y%”

max = maximum voltage, max temp deg C, typical process, plus “Y%”

where nominal, min, and max temp are specified by the semiconductor vendor. The

preferred range is 50 deg C nom, 0 deg C min, and 100 deg C max temperatures.

Note that the derate factor, “Y%”, may be different than that used for the I-V table data.

This factor is similar to the X% factor described above. As in the case of I-V tables,

temperatures are junction temperatures.

f. During the I-V measurements, the driving waveform should have a rise/fall time fast

enough to avoid thermal feedback. The specific choice of sweep time is left to the

modeling engineer.

4) Transit Time Extractions:

The transit time parameter is indirectly derived to be the value that produces the same effect as that

extracted by the reference measurement or reference simulation. See Figure 37.

The test circuit consists of the following:

a. A pulse source (10 ohms, 1 ns at full duration ramp) or equivalent and transitioning

between Vcc and 0 V,

b. A 50 ohm, 1 ns long trace or transmission line,

c. A 500 ohm termination to the ground clamp reference voltage for TTgnd extraction and to

the power clamp reference voltage for TTpower extraction (to provide a convenient,

minimum loading 450 ohm - 50 ohm divider for high-speed sampling equipment

observation of the component denoted as the device under test), and

d. The device under test (DUT).

IBIS Version 6.0

164

10 ohms

Example of TTgnd Extraction Setup

 1 ns
1 ns, 10 ohm
Source Signal

Vcc

0 V

Choose TTgnd that matches the measured
delay with the IBIS model simulation delay

Z0 = 50 ohm
TD = 1 ns

500 ohm Load for Probing

DUT with [GND Clamp]

Figure 37 - Example of TTgnd Extraction Setup

The TTgnd extraction will be done only if a [GND Clamp] table exists. A high to low transition

that produces a positive “glitch,” perhaps several nanoseconds later, indicates a stored charge in the

ground clamp circuit. The test circuit is simulated using the complete IBIS model with C_comp and

the Ct model defined under the [TTgnd] and [TTpower] keywords. An effective TTgnd value that

produces a “glitch” with the same delay is extracted.

Similarly, the TTpower extraction will be done only if a [POWER Clamp] table exists. A low to

high transition that produces a negative “glitch,” perhaps several nanoseconds later, indicates a

stored charge in the power clamp circuit. An effective TTpower value that produces a glitch with

the same delay is extracted.

It is preferred to do the extractions with the package parameters removed. However, if the

extraction is done from measurements, then the package model should be included in the IBIS

based simulation.

5) Series MOSFET Table Extractions:

An extraction circuit is set up according to Figure 38. The switch is configured into the “On” state.

This assumes that the Vcc voltage will be applied to the gate by internal logic. Designate one pin

of the switch as the source node, and the other pin as the drain node. The Table Currents designated

as Ids are derived directly as a function of the Vs voltage at the source node as Vs is varied from 0

to Vcc. This voltage is entered as a Vgs value as a consequence of the relationship Vtable = Vgs =

Vcc - Vs. Vds is held constant by having a fixed voltage Vds between the drain and source nodes.

Note, Vds > 0 V. The current flowing into the drain is tabulated in the table for the corresponding

Vs points.

IBIS Version 6.0

165

Example of Series MOSFET Table Extraction

Sweep
 Vs

 - s
 Vgs
g +

Ids = Table Current

 Vs +
Fixed Vds

+

-

d

Figure 38 - Example of Series MOSFET Table Extraction

It is expected that this data will be created from semiconductor vendor proprietary silicon models,

and later correlated with actual component measurement.

IBIS Version 6.0

166

10 ALGORITHMIC MODELING

10.1 ALGORITHMIC MODELING INTERFACE (AMI)

INTRODUCTION

Algorithmic modeling of advanced Serializer-Deserializer (SERDES) devices is supported by IBIS,

through the Algorithmic Modeling Interface (AMI). The AMI approach breaks SERDES device

modeling into two parts – electrical and algorithmic. The combination of the transmitter’s analog

back-end, the serial channel and the receiver’s analog front-end are assumed to be linear and time

invariant. There is no limitation that the equalization has to be linear and time invariant. The

“analog” portion of the channel is characterized by means of an impulse response leveraging the

IBIS constructs for device models defined in Sections 6.1, 6.2 and 6.3.

The transmitter equalization, receiver equalization and clock recovery circuits are assumed to have

a high-impedance (electrically isolated) connection to the analog portion of the channel. This

makes it possible to model these circuits based on a characterization of the analog channel. The

behavior of these circuits is modeled algorithmically through two files:

 an executable model file, which processes the waveforms that characterize the channel

 a parameter definition file, which defines key parameters and parameter ranges used by the

executable model file and/or the EDA tool itself for algorithmic modeling

Both of these files are provided by the SERDES device vendor.

This section defines how the components of an algorithmic model are specified in an .ibs file. The

structure of the executable model file, methods for passing data to and from the executable model

file and how the executable model file is called from the EDA tool are described in Section 10.2.

Section 10.3 describes the parameter definition file syntax and usage.

References to algorithmic models may be included in .ibs files using the following keywords:

[Algorithmic Model]

[End Algorithmic Model]

The placement of these keywords within the hierarchy of IBIS is shown below:

 ├── [Component]

 │

 ├── [Model]

 │ │

 │ ├── [Algorithmic Model]

 │ │ └── [End Algorithmic Model]

 │ │

IBIS Version 6.0

167

KEYWORD DEFINITIONS

Keywords: [Algorithmic Model], [End Algorithmic Model]

Required: No

Description: Used to reference an executable model file and accompanying parameter definition

file. This executable model file encapsulates signal processing functions, while the parameter

definition file includes configuration information for the model and EDA tool. In the case of a

receiver, the executable model file may additionally include clock and data recovery functions.

The executable model file can receive and modify waveforms with the analog channel, where the

analog channel consists of the transmitter output stage, the transmission channel itself and the

receiver input stage. This data exchange is implemented through a set of software functions. The

signature of these functions is elaborated in Section 10.2 of this document. The function interface

must comply with the ANSI "C" language.

Note that, while the file is described here as an “executable model file”, the file is a compiled

library of functions that may or may not be itself executable.

Sub-Params: Executable

Usage Rules: The [Algorithmic Model] keyword must be positioned within a [Model] section and

it may appear only once for each [Model] keyword in a .ibs file. It is not permitted under the

[Submodel] keyword or in [Model]s which are of Model_type Terminator, Series or Series_switch.

The [Algorithmic Model] always processes a single waveform regardless whether the model is

single ended or differential. When the model is differential, the waveform passed to the

[Algorithmic Model] must be a difference waveform.

[Algorithmic Model], [End Algorithmic Model]:

Begins and ends an algorithmic model section, respectively.

Executable:

Three entries follow the Executable subparameter on each line:

Platform_Compiler_Bits File_Name Parameter_File

The Platform_Compiler_Bits entry provides the name of the operating system, compiler and its

version and the number of bits the executable model file is compiled for. It is a string without

white spaces, consisting of three fields separated by an underscore (“_”). The first field consists of

the name of the operating system followed optionally by its version. The second field consists of

the name of the compiler followed by optionally by its version. The third field is an integer

indicating the platform architecture. If the version for either the operating system or the compiler

contains an underscore, it must be converted to a hyphen “-”. This is so that an underscore is only

present as a separation character in the entry.

The architecture entry can be either “32” or “64”. Examples of Platform_Compiler_Bits:

Linux_gcc3.2.3_32

Solaris5.10_gcc4.1.1_64

Solaris_cc5.7_32

Windows_VisualStudio7.1.3088_32

HP-UX_accA.03.52_32

IBIS Version 6.0

168

The EDA tool will check for the compiler information and verify if the executable model file is

compatible with the operating system and platform.

Multiple occurrences, without duplication, of Executable are permitted to allow for providing

executable model files for as many combinations of operating system platforms and compilers for

the same algorithmic model.

The File_Name provides the name of the executable model file. The executable model file should

be in the same directory as the.ibs file.

The Parameter_File entry provides the name of the parameter definition file, which shall have an

extension of .ami. This must be an external file and should reside in the same directory as the .ibs

file and the executable model file. See Section 10.3 for details.

Examples:

Example of Receiver Model in [Algorithmic Model]:

[Algorithmic Model]

|

Executable Windows_VisualStudio_32 example_rx.dll example_rx_params.ami

|

[End Algorithmic Model]

Example of Transmitter Model in [Algorithmic Model]:

[Algorithmic Model]

|

Executable Windows_VisualStudio_32 tx_getwave.dll tx_getwave_params.ami

Executable Solaris_cc_32 libtx_getwave.so tx_getwave_params.ami

|

[End Algorithmic Model]

10.2 AMI EXECUTABLE MODEL FILE PROGRAMMING GUIDE

This section is organized as an interface and programming guide for the executable model file

referenced by the [Algorithmic Model] keyword described in Section 10.1. Section 10.3 serves as

a reference document for the AMI parameter definition file structure for model makers and

software engineers.

10.2.1 OVERVIEW

The executable model file of a Serializer-Deserializer (SERDES) transmitter or receiver contains

up to three functions: “AMI_Init”, “AMI_GetWave” and “AMI_Close”. The interfaces to these

functions are designed to support three different phases of the simulation process: initialization,

simulation of a segment of time, and termination of the simulation.

These functions (AMI_Init, AMI_GetWave and AMI_Close) should all be supplied in a single

executable model file, and their names and signatures must be as described in this section. If they

are not supplied in the executable model file named by the Executable sub-parameter, then they

shall be ignored. This is acceptable so long as:

1. The entire functionality of the model is supplied in the executable model file.

2. All termination actions required by the model are included in the executable model file.

The three functions can be included in the executable model file in one of the following two

combinations:

Case 1: Executable model file has AMI_Init, AMI_GetWave and AMI_Close.

Case 2: Executable model file has AMI_Init and AMI_Close.

Please note that the functions AMI_Init and AMI_Close are always required.

The interfaces to these functions are defined from three different perspectives. In addition to

specifying the signature of the functions to provide a software coding perspective, anticipated

application scenarios provide a functional and dynamic execution perspective, and a specification

of the software infrastructure provides a software architecture perspective. Each of these

perspectives is required to obtain interoperable software models.

Notes:

1. Throughout this section, terms “long”, “double” etc. are used to indicate the data types

in the C programming language as published in ISO/IEC 9899-1999.

2. Throughout this section, text strings inside the symbols “<” and “>” should be

considered to be supplied or substituted by the model maker. Text strings inside “<”

and “>” are not reserved and can be replaced.

10.2.2 APPLICATION SCENARIOS

The next two sections provide an overview of the two simulation types supported for algorithmic

models by IBIS. Statistical simulations require that the algorithm in the executable model file is

linear and time-invariant (LTI). Time domain simulations do not have this requirement. Therefore

executable model files used in time domain simulations may also contain non-linear and/or time-

variant (non-LTI) algorithms.

IBIS Version 6.0

170

System simulations will commonly involve a transmitter (Tx) and a receiver (Rx) executable model

file, each of which may perform filtering in the AMI_Init function, the AMI_GetWave function, or

both (i.e., a "dual" algorithmic model). In the case of a "dual" algorithmic model, the filtering

functionality in the AMI_Init and AMI_GetWave functions are each intended to be independent

representations of the device’s equalization. Users of a dual model can elect to use either the

AMI_Init or AMI_GetWave filtering functionality, but not combine both simultaneously.

While the primary purpose of the AMI_Init function is to perform the required initialization steps,

it may also include LTI signal processing algorithms. Therefore, statistical simulations may be

performed using the AMI_Init function alone.

Even though time domain simulations may also be performed with the LTI AMI_Init and/or LTI

AMI_GetWave functions, AMI_GetWave functions containing non-LTI algorithms may only be

simulated in the time domain.

10.2.2.1 STATISTICAL SIMULATIONS

1. From the system netlist, the EDA tool determines that a given buffer is described by an IBIS

[Model].

2. From the IBIS [Model], the EDA tool determines that the buffer is described in part by an

[Algorithmic Model].

3. The EDA tool loads the executable model file referenced by [Algorithmic Model], and obtains

the addresses of the AMI_Init, AMI_GetWave, and AMI_Close functions.

4. The EDA tool loads the corresponding parameter definition file (.ami file) and assembles the

arguments for the AMI_Init function. These arguments include an impulse response matrix, a

memory handle for the dynamic memory used by the executable model, the parameters for

configuring the algorithmic model, and optionally the impulse response(s) of any crosstalk

interferers.

5. The EDA tool calls the AMI_Init function with the arguments previously prepared. The

AMI_Init function of the transmitter and receiver [Algorithmic Model]s are called separately as

described in the reference flow below.

6. The AMI_Init function parses the configuration parameters, allocates dynamic memory, places

the address of the start of the dynamic memory into the memory handle and modifies the impulse

response by the filter response of the [Algorithmic Model].

7. The EDA tool completes the rest of the simulation/analysis using the impulse response

calculated by the AMI_Init function which is a complete representation of the behavior of a given

[Algorithmic Model] combined with the channel.

8. Before exiting, the EDA tool calls the AMI_Close function, giving it the address in the memory

handle for the [Algorithmic Model].

9. The AMI_Close function de-allocates the dynamic memory used by the [Algorithmic Model]

and performs whatever other clean-up actions are required.

10. The EDA tool terminates execution.

IBIS Version 6.0

171

10.2.2.2 TIME DOMAIN SIMULATIONS

1. From the system netlist, the EDA tool determines that a given buffer is described by an IBIS

[Model].

2. From the IBIS [Model], the EDA tool determines that the buffer is described in part by an

[Algorithmic Model].

3. The EDA tool loads the executable model file referenced by [Algorithmic Model], and obtains

the addresses of the AMI_Init, AMI_GetWave, and AMI_Close functions.

4. The EDA tool loads the corresponding parameter definition file (.ami file) and assembles the

arguments for the AMI_Init function. These arguments include an impulse response matrix, a

memory handle for the dynamic memory used by the [Algorithmic Model], the parameters for

configuring the [Algorithmic Model], and optionally the impulse response(s) of any crosstalk

interferers.

5. The EDA tool calls the AMI_Init function with the arguments previously prepared. The

AMI_Init function of the transmitter and receiver [Algorithmic Model]s are called separately as

described in the reference flow below.

6. The AMI_Init function parses the configuration parameters, allocates dynamic memory, places

the address of the start of the dynamic memory into the memory handle and (optionally) modifies

the impulse response by the filter response of the [Algorithmic Model]. The EDA tool may make

use of the impulse response returned by the AMI_Init function in its further analysis if needed.

7. The EDA tool generates a time domain digital input waveform bit pattern (stimulus). A long bit

pattern (and simulation) may be broken up into multiple time segments by the EDA tool. For

example, if one million bits are to be simulated, there can be 1000 segments of 1000 bits each, i.e.,

one time segment comprises 1000 bits. The segments are not required to be equally sized and are

not required to contain an integer number of bits.

8. For each time segment, the EDA tool calls the AMI_GetWave function of the transmitter (if it

exists), giving it the digital input waveform and the address in the memory handle for the

[Algorithmic Model].

9. For the AMI_GetWave function of the receiver, the EDA tool takes the output from the

transmitter AMI_GetWave function (if it exists) and combines it (for example by convolution) with

the channel impulse response to produce an analog waveform and passes this result to the receiver

AMI_GetWave function for each time segment of the simulation. If the transmitter AMI_GetWave

function doesn’t exist, the EDA tool takes the output of the transmitter AMI_Init function and

combines that (for example by convolution) with the digital stimulus bit pattern to produce the

analog waveform for the receiver AMI_GetWave function.

10. The output waveform of the receiver AMI_GetWave function represents the voltage waveform

at the decision point of the receiver. The EDA tool completes the simulation/analysis with this

waveform.

11. Before exiting, the EDA tool calls the AMI_Close function, giving it the address in the memory

handle for the [Algorithmic Model].

12. The AMI_Close function de-allocates the dynamic memory used by the [Algorithmic Model]

and performs whatever other clean-up actions are required.

13. The EDA tool terminates execution.

IBIS Version 6.0

172

10.2.2.3 REFERENCE FLOWS

The next two sections define a reference simulation flow for statistical and time domain system

analysis simulations. Other methods of calling models and processing results may be employed,

but the final simulation waveforms are expected to match the waveforms produced by this

reference simulation flow.

A system simulation usually involves a transmitter (Tx) and a receiver (Rx) model with a passive

channel placed between them.

10.2.2.3.1 STATISTICAL SIMULATION REFERENCE FLOW

Step 1. The EDA tool obtains the impulse response for the analog channel. This represents the

combined impulse response of the transmitter’s analog output, the channel and the receiver’s

analog front end. The transmitter’s output or receiver’s input characteristics must not include any

filtering effects, for example equalization, in this impulse response, although it may include any

parasitics which are included in the Tx or Rx analog model.

Step 2. The output of Step 1 is presented to the Tx executable model file’s AMI_Init function and

the Tx AMI_Init function is executed. The impulse response returned by the Tx AMI_Init function

is passed onto Step 3.

Step 3. The output of Step 2 is presented to the Rx executable model file’s AMI_Init function and

the Rx AMI_Init function is executed. The impulse response returned by the Rx AMI_Init function

is passed onto Step 4.

Step 4. The EDA tool completes the rest of the simulation/analysis using the impulse response

calculated in Step 3 by the Rx executable model file’s AMI_Init function which is a complete

representation of the behavior of a given [Algorithmic Model] combined with the channel.

10.2.2.3.2 TIME DOMAIN SIMULATION REFERENCE FLOW

Step 1. The EDA tool obtains the impulse response for the analog channel. This represents the

combined impulse response of the transmitter’s analog output, the channel and the receiver's analog

front end. The transmitter’s output or receiver’s input characteristics must not include any filtering

effects, for example equalization, in this impulse response, although it may include any parasitics

which are included in the Tx or Rx analog model.

Step 2. The output of Step 1 is presented to the Tx executable model file’s AMI_Init function and

the Tx AMI_Init function is executed. The Tx AMI_Init function may modify the impulse

response or choose to leave it unchanged.

Step 3. The output of Step 2 is presented to the Rx executable model file’s AMI_Init function and

the Rx AMI_Init function is executed. The Rx AMI_Init function may modify the impulse

response or choose to leave it unchanged.

Under certain circumstances, for example when the Rx AMI_Init function includes an optimization

algorithm, the impulse response presented to the Rx AMI_Init function must include the Tx

equalization effects for the optimization to work correctly. However, when the Tx AMI model

contains an AMI_GetWave function that performs a similar or better equalization than the Tx

IBIS Version 6.0

173

AMI_Init function, there is a possibility for “double-counting” the equalization effects in the Tx

executable model file. To allow for such models to work correctly, the EDA tool can operate in

one of several ways, two of which are documented here:

 not utilize the Tx AMI_GetWave functionality, by treating the Tx AMI model as if the

Tx GetWave_Exists was False.

 use deconvolution to obtain the impulse response of the Rx filter. Since the AMI_Init

function contains a linear and time invariant algorithm, the Rx equalization can be

represented as an impulse response. Since the output of the Rx AMI_Init function

(output of Step 3) is an impulse response modified by the Rx equalization (e.g., by

convolving the input of the Rx AMI_Init function with the impulse response of the Rx

filter), the impulse response of the Rx filter can be obtained by deconvolving the output

of Step 3 with the input presented to Step 3.

Note: The Rx executable model file writer should keep in mind that it is not guaranteed that the

impulse response that is presented to the Rx AMI_Init function will always include the effects of

the Tx filter. Therefore the Rx AMI_Init function may not be able to perform accurate

optimization under all circumstances. For this reason, the parameters of the Rx AMI_Init function

should always default to valid values or have a mechanism to accept user-defined coefficients and

allow the user to turn off any automatic optimization routines to ensure successful simulations.

Step 4. The EDA tool produces a digital stimulus waveform. A digital stimulus waveform is 0.5

when the stimulus is "high", -0.5 when the stimulus is "low", and may have a value between -0.5

and 0.5 such that transitions occur when the stimulus crosses 0.

Step 5. If Tx GetWave_Exists is True the output of Step 4 is presented to the Tx executable model

file’s AMI_GetWave function and the Tx AMI_GetWave function is executed. The output of the

Tx AMI_GetWave function is passed on to Step 6.

Step 6a. If Tx GetWave_Exists is True and Rx GetWave_Exists is True, the output of Step 5 is

convolved with the output of Step 1 by the EDA tool and the result is passed on to Step 7.

Step 6b. If Tx GetWave_Exists is False and Rx GetWave_Exists is True, the output of Step 4 is

convolved with the output of Step 2 by the EDA tool and the result is passed on to Step 7.

Step 6c. If Tx GetWave_Exists is False and Rx GetWave_Exists is False, the output of Step 4 is

convolved with the output of Step 3 by the EDA tool and the result is passed on to Step 8.

Step 6d. If Tx GetWave_Exists is True and Rx GetWave_Exists is False, the output of Step 5 is

convolved with the output of Step 1 and the Impulse Response of the Rx filter by the EDA tool and

the result is passed on to Step 8. (The Impulse Response of the Rx filter may be obtained by

deconvolving the output of Step 3 by the input of Step 3).

Note: For the scenario where the Tx AMI_Init function does NOT include equalization effects (i.e.,

does not modify the impulse response of the channel), Step 6d is functionally equivalent to simply

convolving the output of Step 5 with the output of Step 3.

Step 7. If Rx GetWave_Exists is True the output of Step 6 is presented to the Rx executable model

file’s AMI_GetWave function and the Rx AMI_GetWave function is executed. The output of the

Rx AMI_GetWave function is passed on to Step 8.

Step 8. The output of Step 6c, 6d or 7 becomes the simulation waveform output at the Rx decision

point. Step 7 optionally may also return clock ticks, which may be post-processed by the

simulation tool or presented to the user as is.

IBIS Version 6.0

174

Steps 4 through 8 can be called once or can be called multiple times to process the full analog

waveform. Splitting up the full analog waveform into multiple calls reduces the memory

requirements when doing long simulations, and allows AMI_GetWave to return model status every

so many bits. Once all blocks of the input waveform have been processed, Tx AMI_Close and Rx

AMI_Close are called to perform any final processing and release allocated memory.

10.2.3 FUNCTION SIGNATURES

This section defines the structure and parameters used with required and optional functions.

Function: AMI_Init

Required: Yes

Declaration: long AMI_Init (double *impulse_matrix,

 long number_of_rows,

 long aggressors,

 double sample_interval,

 double bit_time,

 char *AMI_parameters_in,

 char **AMI_parameters_out,

 void **AMI_memory_handle,

 char **msg)

Arguments:

impulse_matrix

“impulse_matrix” points to a memory location where the collection of channel voltage impulse

responses, called the "impulse response matrix", is stored in the form of a single dimensional array

of floating point numbers. The impulse responses pointed to by the “impulse_matrix” argument

are both input and output. The EDA tool provides the impulse responses. The algorithmic model

is expected to modify the impulse responses in place by applying a filtering behavior, for example,

an equalization function, if modeled in the AMI_Init function. The impulse response values are

uniformly spaced in time. The sample spacing is determined by the EDA tool and passed to the

algorithmic model trough the AMI_Init function’s “sample_interval” argument.

The first column of the impulse response matrix is the impulse response for a through channel, a

channel that serves as a communication path between a transmitter/receiver pair. The rest of the

columns contain the impulse responses of crosstalk channels. Crosstalk channels describe the paths

between aggressor transmitters and victim receiver(s). Transmitters which are not part of a through

channel between a certain transmitter/receiver pair are all considered aggressor transmitters with

respect to that through channel. The receiver of the through channel in consideration is referred to

as the victim receiver. The crosstalk impulse responses may be placed into the impulse response

matrix in any order.

The single dimensional array of “impulse_matrix” is formed by concatenating the columns of an

impulse response matrix, starting with the first column and ending with the last column. The

matrix elements can be retrieved or identified using the following relationships:

IBIS Version 6.0

175

impulse_matrix[idx] = impulse response matrix element (row, col)

Where:

 idx = col * number_of_rows + row

 row is the row index ranging from 0 to number_of_rows-1

 col is the column index ranging from 0 to aggressors

Each impulse response in the impulse response matrix must have the same sample spacing and the

same length.

To include any crosstalk effects in the Reference Flows described in this section of this

specification, the crosstalk impulse responses must be included in the “impulse_matrix” and passed

to the transmitter and receiver AMI_Init functions. If present, any filtering in the transmitter and/or

receiver AMI_Init function(s) must also be applied to the crosstalk impulse responses to properly

account for the crosstalk effects.

Note that the “impulse_matrix” will contain a different set of crosstalk impulse responses for the

transmitter and receiver AMI_Init calls, even for a transmitter/receiver pair of the same through

channel. A transmitter’s AMI_Init function operates on those impulse responses which originate

from that transmitter, including the through channel and crosstalk channel impulse responses. A

victim receiver’s AMI_Init function, on the other hand, operates on all of those impulse responses

which are received by that victim receiver, including the through channel and crosstalk channel

impulse responses.

As an illustration, consider a crosstalk analysis with five channels numbered 1 through 5, where

channel 3 in the center is the through channel of the transmitter/receiver pair Tx3/Rx3, and Rx3 is

the victim receiver. In this case channels 1, 2 and 4, 5 are the aggressor channels with the

aggressor transmitters Tx1, Tx2, Tx4 and Tx5. If the five “impulse_matrix”-es of the five

transmitters’ AMI_Init functions contain the following data:

 impulse_matrix impulse_matrix

 column 1 column 2

 Tx1 IR1_1 IR1_3

 Tx2 IR2_2 IR2_3

 Tx3 IR3_3

 Tx4 IR4_4 IR4_3

 Tx5 IR5_5 IR5_3

then the “impulse_matrix” passed into the victim receiver’s (Rx3) AMI_Init function will contain

the following data:

 impulse_matrix impulse_matrix impulse_matrix impulse_matrix impulse_matrix

 column 1 column 2 column 3 column 4 column 5

Rx3 Tx3Init(IR3_3) Tx1Init(IR1_3) Tx2Init(IR2_3) Tx4Init(IR4_3) Tx5Init(IR5_3)

IBIS Version 6.0

176

where "IRi_j" represents the impulse response from the transmitter on channel i to the receiver on

channel j, Tx1Init() .. Tx5Init() represents the output of a transmitter’s AMI_Init function which

modified the impulse response denoted inside the parentheses. Note that while in this example the

“impulse_matrix” of each transmitter’s AMI_Init function contains at most one crosstalk impulse

response, the victim receiver’s “impulse_matrix” contains four crosstalk impulse responses. Also,

using the above notation note that the first index number of each impulse response passed to the

transmitter’s AMI_Init function matches the transmitter’s channel number, and the second index

number of each impulse response passed to the receiver’s AMI_Init function matches the receiver’s

channel number.

It is the EDA tool’s responsibility to rearrange the content of the “impulse_matrix” between the

transmitter and receiver AMI_Init calls.

The EDA tool is also responsible to limit the number of crosstalk channel impulse responses in

“impulse_matrix” so that they shall not exceed “Max_Init_Aggressors” as specified in the

corresponding parameter definition file of the algorithmic model. Consequently, the “aggressors”

parameter of the AMI_Init function shall never contain a greater value than the value provided in

“Max_Init_Aggressors” of the corresponding parameter definition file. While the allocated

memory space for “impulse_matrix” may be larger, it is assumed that there is no meaningful data

in that space beyond the last column of the impulse response matrix that is stored in it.

The AMI_Init function must not change the size or organization of “impulse_matrix” that it was

given in any way.

number_of_rows

The number of rows in the impulse_matrix.

aggressors

The number of aggressors in the impulse_matrix.

sample_interval

This is the sampling interval of the “impulse_matrix” passed into the AMI_Init function and the

“wave” passed into the AMI_GetWave function. The sample_interval is determined by the EDA

tool and it is usually a fraction of the bit_time. The “impulse_matrix” and “wave” returned by the

algorithmic model must have the same “sample_interval” as the original “impulse_matrix” and

“wave” that was passed into the algorithmic model. The unit for sample_interval is the second.

Impulse responses in “impulse_matrix” and waveforms in “wave” should be treated as continuous

analog waveforms by the algorithmic models. For this reason, algorithmic models must be able to

produce valid results at any sample_interval. Any internal analog to digital conversion or

resampling is the responsibility of the algorithmic model. In case the algorithmic model is unable

to operate at a given sample_interval, it should abort gracefully with an exit code 0 (failure) and

appropriate messaging.

Example:

Sample_interval = (lowest_bit_time / 64)

IBIS Version 6.0

177

bit_time

bit_time is the bit time or unit interval (UI) of the current data, e.g., 100 ps, 200 ps etc. The

executable model file may use this information along with the impulse_matrix to initialize the filter

coefficients. The unit for bit_time is the second.

AMI_parameters_in

The AMI_parameters_in argument is a pointer to a string. Memory for the string is allocated and

de-allocated by the EDA tool. All the input from the parameter definition file is passed to the

algorithmic model using a string that has been formatted as using the tree structure defined below.

The AMI_parameters_in argument must always be present in the AMI_Init function call and it

must always contain the address of a valid string. The string must always contain at least the root

name of the parameter tree, even if there are no parameters to pass to the algorithmic model.

Examples:

Examples of tree structures used for formatting and passing parameters:
(mySampleAMI_1)

(mySampleAMI_2

 (tx

 (taps 4)

 (spacing sync)

)

)

(mySampleAMI_3

 (branch1

 (leaf1 value1)

 (leaf2 value2)

 (branch2

 (leaf3 value3)

 (leaf4 value4)

)

 (leaf5 value5 value6 value7)

)

)

The syntax for the parameter string is:

1. The parameter and message strings passed through the AMI_parameters_in,

AMI_parameters_out and msg arguments must not be enclosed in double quotes.

2. Neither names nor individual values except for string literals may contain white space

characters.

3. Parameter name/value pairs are always enclosed in parentheses, with the value separated from

the name by white space.

4. A parameter value in a name/value pair can be either a single value or a list of values separated

by whitespace.

IBIS Version 6.0

178

5. Parameter name/value pairs can be grouped together into parameter groups by starting with an

open parenthesis followed by the group name followed by the concatenation of one or more

name/value pairs followed by a close parenthesis.

6. Parameter name/values pairs and parameter groups can be freely intermixed inside a parameter

group.

7. The top level parameter string must be a parameter group.

8. White space is ignored, except as a delimiter between the parameter name and value.

9. Parameter values can be expressed either as a string literal, Boolean literal (True or False),

decimal number, or a floating point number in the standard ANSI “C” notation (e.g., 2.0e-9).

String literal values are delimited using a double quote (") and no double quotes are allowed

inside the string literals. Empty string literals are denoted by two successive double quote

characters.

10. A parameter can be assigned an array of values by enclosing the parameter name and the array

of values inside a single set of parentheses, with the parameter name and the individual values

all separated by white space.

The modified BNF specification for the syntax is:

 <tree>:

 <branch>

 <branch>:

 (<branch name> <leaf list>)

 <leaf list>:

 <branch>

 <leaf>

 <leaf list> <branch>

 <leaf list> <leaf>

 <leaf>:

 (<parameter name> whitespace <value list>)

 <value list>:

 <value>

 <value list> whitespace <value>

 <value>:

 <string_literal>

 <Boolean_literal>

 <decimal number>

 <decimal number>e<exponent>

 <decimal number>E<exponent>

AMI_parameters_out

The AMI_parameters_out argument is a pointer to a string pointer. Memory for the string is

allocated and de-allocated by the algorithmic model. The model returns a pointer to the string as

the contents of this argument. The string must be formatted using the tree structure described in

AMI_parameters_in above. The AMI_Init function may use this string to return parameters to the

EDA tool.

IBIS Version 6.0

179

While the AMI_parameters_out argument must always be present in the AMI_Init function call and

the EDA tool must always provide a valid (non-zero) address value in it, algorithmic models are

not required to return anything at that address to the EDA tool. For this reason, the EDA tool must

also initialize the memory content at that address to zero (null pointer) prior to calling the AMI_Init

function, so that after the execution of the function it can determine whether or not the function

returned a valid string pointer at that address. If the AMI_Init function does not have any

parameters to return to the EDA tool, it must return a pointer at the address provided in this

argument to a string which contains nothing but the root name. Note that the root name must

always be included in the string.

AMI_memory_handle

Used to point to local storage for the algorithmic block being modeled and shall be passed back

during the AMI_GetWave calls. e.g., a code snippet may look like the following:

my_space = allocate_space(sizeof_space);

status = store_all_kinds_of_things(my_space);

*serdes_memory_handle = my_space;

The memory pointed to by AMI_handle is allocated and de-allocated by the model.

msg

The msg argument is a pointer to a string pointer. Memory for the string is allocated and de-

allocated by the algorithmic model. The model returns a pointer to the string as the contents of this

argument. The AMI_Init function may use this string to send a descriptive, textual message to the

EDA tool to be displayed in the user interface and/or to be saved in a log file.

While the msg argument must always be present in the AMI_Init function call and the EDA tool

must always provide a valid (non-zero) address value in it, algorithmic models are not required to

return anything at that address to the EDA tool. For this reason, the EDA tool must also initialize

the memory content at that address to zero (null pointer) prior to calling the AMI_Init function, so

that after the execution of the function it can determine whether or not the function returned a valid

string pointer at that address. If the AMI_Init function does not have a message string to return to

the EDA tool, it may take the following actions:

 ignore the address provided in this argument (leaving the EDA tool provided null

pointer at that address)

 return a null pointer at the address provided in this argument (redundantly rewriting

the EDA tool provided null pointer at that address)

Return Value

1 for success

0 for failure

Algorithmic models shall return a failure code (0) if and only if the function call fails due to a

program execution error. In all other cases the return code shall be "success" (1), even if the

IBIS Version 6.0

180

function cannot operate properly due to some functional problems. For example, if a function

includes a CDR which is unable to get into a stable mode, the function shall still return a success

code (1). Examples for returning a failure code (0) may include an invalid data type, a null pointer

during run time, or anything that prevents the successful execution of the model’s code.

The authors of Algorithmic Models are encouraged to provide feedback to the EDA tool’s users

through the various available messaging options about any difficulties the model encounters during

execution, regardless of what the value of the function’s return code is.

Function: AMI_GetWave

Required: No

Declaration: long AMI_GetWave (double *wave,

 long wave_size,

 double *clock_times,

 char **AMI_parameters_out,

 void *AMI_memory)

Arguments:

wave

“wave” points to a memory location where a uniformly sampled vector of a time domain waveform

is stored. The waveform pointed to by the “wave” argument is both input and output. The EDA

tool provides the wave. The algorithmic model is expected to modify the waveform in place by

applying a filtering behavior, for example, an equalization function, if modeled in the

AMI_GetWave function. The sample spacing is determined by the EDA tool and passed to the

algorithmic model trough the AMI_Init function’s “sample_interval” argument.

Depending on the EDA tool and the analysis/simulation method chosen, the input waveform could

include many components. For example, the input waveform could include:

 The waveform for the primary channel only.

 The waveform for the primary channel plus crosstalk and amplitude noise.

 The output of a time domain circuit simulator such as SPICE.

It is assumed that the electrical interface to either the driver or the receiver is differential.

Therefore, the sample values are assumed to be differential voltages centered nominally around

zero volts. The algorithmic model’s logic threshold may be non-zero, for example to model the

differential offset of a receiver; however that offset will usually be small compared to the input or

output differential voltage.

The output waveform is expected to be the waveform at the decision point of the receiver (that is,

the point in the receiver where the choice is made as to whether the data bit is a “1” or a “0”). It is

understood that for some receiver architectures, there is no one circuit node which is the decision

point for the receiver. In such a case, the output waveform is expected to be the equivalent

waveform that would exist at such a node were it to exist.

IBIS Version 6.0

181

wave_size

This is the number of samples in the waveform vector that is in the AMI_GetWave function

argument “wave”. The length of this waveform is determined by the EDA tool. The value of

“wave_size” may be different between AMI_GetWave calls within the same simulation. The

“wave” returned by the algorithmic model must have the same number of samples as the original

“wave” that was passed into the algorithmic model. Algorithmic models must be able to produce

valid results with any wave_size. In case the algorithmic model is unable to operate with a given

wave_size, it should abort gracefully with an exit code 0 (failure) and appropriate messaging.

clock_times

Vector to return clock times. The clock times are referenced to the start of the simulation (the first

AMI_GetWave call). The clock_times vector is allocated by the EDA tool and is guaranteed to be

greater than the number of clocks expected during the AMI_GetWave call. The clock times are

exactly bit_time/2 before the input data signal is sampled. The algorithmic model will return non-

negative clock_times values, and place -1 after the last valid clock tick in the clock_times vector

during each AMI_GetWave call. If there are no valid clock ticks for the duration of an

AMI_GetWave call, a single entry of -1 will be returned in the clock_times vector. The units of

clock_times are seconds.

The clock ticks represented by clock times should be strictly monotonic, both within the

clock_times vector returned from a single call to AMI_GetWave and between successive calls to

AMI_GetWave. That is, within a given clock_times vector each successive valid value is greater

than the value that preceded it, and the first valid value from a given call to AMI_GetWave must be

greater than the last valid value from the preceding call to AMI_GetWave. Any non-strict-

monotonic behavior of clock times (including two identical values) should be considered by EDA

tool as an algorithmic model failure.

Each valid value in the clock_times vector shall be used to sample the output waveform by adding

to it bit_time/2, regardless whether that waveform sample occurs in the waveform segment being

returned by the current call to AMI_GetWave, or in the waveform segment to be returned by the

next AMI_GetWave call. Care should be taken in implementation of clock_times to insure that the

calculations used always maintain full double-precision floating point accuracy across multi-

million bit simulations.

Although clock_times will generally be related to the unit interval for the primary SerDes channel

being simulated, there is no requirement that there be any relationship between the clock ticks

generated by clock_times and the actual waveform returned in the primary channel. It is possible

for the CDR to go out of lock, resulting in clock ticks that have no definite relationship to the

output wave. It is possible for the CDR to be suppressed for an undefined number of bits until the

output of the 1st clock tick. In the case of a receiver without a CDR, it is possible for only -1 to

ever be output during all AMI_GetWave calls.

AMI_parameters_out

The AMI_parameters_out argument is a pointer to a string pointer. Memory for the string is

allocated and de-allocated by the algorithmic model. The model returns a pointer to the string as

the contents of this argument. The string must be formatted using a tree structure, as described in

IBIS Version 6.0

182

AMI_parameters_in above. The AMI_GetWave function may use this string to return parameters

to the EDA tool.

While the AMI_parameters_out argument must always be present in the AMI_GetWave function

call and the EDA tool must always provide a valid (non-zero) address value in it, executable model

files are not required to return anything at that address to the EDA tool. For this reason, the EDA

tool must also initialize the memory content at that address to zero (null pointer) prior to calling the

AMI_GetWave function, so that after the execution of the function it can determine whether or not

the function returned a valid string pointer at that address. If the AMI_GetWave function does not

have any parameters to return to the EDA tool, it must return a pointer at the address provided in

this argument to a string which contains nothing but the root name. Note that the root name must

always be included in the string.

AMI_memory

This is the memory which was allocated during the AMI_Init call.

Return Value

1 for success

0 for failure

Executable model files shall return a failure code (0) if and only if the function call fails due to a

program execution error. In all other cases the return code shall be "success" (1), even if the

function cannot operate properly due to some functional problems. For example, if a function

includes a CDR which is unable to get into a stable mode, the function shall still return a success

code (1). Examples for returning a failure code (0) may include an invalid data type, a null pointer

during run time, or anything that prevents the successful execution of the model’s code.

The authors of executable model files are encouraged to provide feedback to the EDA tool’s users

through the various available messaging options about any difficulties the model encounters during

execution, regardless of what the value of the function’s return code is.

Function: AMI_Close

Required: Yes

Declaration: long AMI_Close(void * AMI_memory)

Arguments:

AMI_memory

Same as for AMI_GetWave. See AMI_GetWave.

IBIS Version 6.0

183

Return Value

1 for success

0 for failure

Executable model files shall return a failure code (0) if and only if the function call fails due to a

program execution error. In all other cases the return code shall be "success" (1), even if the

function cannot operate properly due to some functional problems. For example, if a function

includes a CDR which is unable to get into a stable mode, the function shall still return a success

code (1). Examples for returning a failure code (0) may include an invalid data type, a null pointer

during run time, or anything that prevents the successful execution of the model’s code.

The authors of executable model files are encouraged to provide feedback to the EDA tool’s users

through the various available messaging options about any difficulties the model encounters during

execution, regardless of what the value of the function’s return code is.

10.2.4 CODE SEGMENT EXAMPLES

extern long AMI_GetWave (wave, wave_size, clock_times, AMI_parameters_out,

AMI_memory);

 my_space = AMI_memory;

 clk_idx = 0;

 time = my_space->prev_time + my_space->sample_interval;

 for(I = 0; I < wave_size; i++)

 {

 wave = filterandmodify(wave, my_space);

 if (clock_times && found_clock (my_space, time))

 clock_times[clk_idx++] = getclocktime (my_space, time);

 time += my_space->sample_interval;

 }

 clock_times[clk_idx] = -1; //terminate the clock vector

 Return 1;

IBIS Version 6.0

184

10.3 AMI PARAMETER DEFINITION FILE STRUCTURE

INTRODUCTION

The information provided in this section is applicable to the content of the AMI parameter

definition file (.ami file; hereinafter, parameter definition file). Note that the rules described below

deviate from the rules for .ibs files

PARAMETER DEFINITION FILE ORGANIZATION

The parameter definition file is organized as a “tree”, with “leaves” and “branches” off a single

“root” identified by a unique name. A branch may contain an AMI parameter, which itself contains

individual leaves, describing features of the model. Branches, unless otherwise noted, may

themselves be used to group other branches.

The file shall contain a distinct section or branch named “Reserved_Parameters” beginning and

ending with parentheses. The file may also contain another section or branch named

“Model_Specific”, beginning and ending with parentheses. “Reserved_Parameters” and

“Model_Specific” are the only branches permitted to be connected to the root of the tree.

The parameter definition file shall be organized in the following way:

(my_AMIname | Root name given to the Parameter file

 (Reserved_Parameters | Required heading to start the

 | required Reserved_Parameters

 | section

 ...

 (Reserved Parameter text starting with AMI_Version)

 ...

) | End of Reserved_Parameters

 | section

 (Model_Specific | Required heading to start the

 | optional Model_Specific section

 ...

 (Model Specific Parameter text)

 ...

) | End of Model_Specific section

 (Description <string>) | description of the model

 | (optional)

) | End my_AMIname parameter file

General Rules:

 The content of the parameter definition file is case sensitive.

 Only the pipe ("|") character is acceptable as a comment character regardless of what the

calling .ibs file uses for the comment character.

 The line length of the parameter definition file is not limited to a specific number of

characters.

 The root name in the file may contain an arbitrary string and does not need to match the file

name.

 A white space in the parameter definition file may be one or more space, tab, and/or line

termination characters.

IBIS Version 6.0

185

 The “Reserved_Parameter” section is required while the “Model_Specific” section is

optional.

 For AMI_Version 5.1 and above, the Reserved_Parameter branch shall appear before the

Model_Specific branch. Branches may be in any order in the Parameter definition file. The

“|” character is the comment character. Any text after the “|” character until the end of the

line will be ignored by the parser.

 Scaling factors or suffixes, such as p, n, etc., are not permitted in the Parameter definition

file.

 Scientific and floating point notation is permitted.

 Note that Description is considered a leaf that may be optionally used within the individual

“Reserved_Parameters” or “Model_Specfiic” branches. Description is also the only leaf

that may be directly connected to the root.

 Leaves may not connect to other leaves, except in the case of Labels for Table (see below).

Note:

1. Throughout this section, text strings inside the symbols “<” and “>” should be considered to

be supplied or substituted by the model maker. Text strings inside “<” and “>” are not

reserved and can be replaced.

PARAMETER RULES SUMMARY

The features of a model described in a parameter definition file are called AMI parameters, and are

grouped into the branches Reserved Parameters and Model_Specific Parameters. AMI parameters

are themselves branches, but may only contain leaves and not other branches.

Branches may define AMI parameters and/or other branches. A branch which contains one or

more sub-branches may only contain the (Description <string>) leaf in addition to the sub-

branches. Each sub-branch of a branch must have a unique name.

All AMI parameter branches shall contain leaf entries formatted as follows:

(<parameter_name>

(Usage <usage>)

(Type <data_type>)

({Format} <data_format> <data>)

(List_Tip) | only with ({Format} List) as discussed below

(Default <value>)

(Description <string>))

AMI parameter branches shall contain the leaves Type, Usage, and any of the following leaves:

Default

<data_format> or Format <data_format>

List_Tip | only with List as discussed below

All leaves of the parameter definition file shall begin with one of the following reserved words:

Type

Usage

Description

Default

IBIS Version 6.0

186

<data_format> or Format <data_format>

List_Tip | only with List as discussed below

Multiple leaves containing the same reserved word are not allowed within an AMI parameter

branch.

Notes:

1) The order of the leaf entries within an AMI parameter branch is not important.

2) The word Format is optional as indicated by the curly braces "{" and "}" and may be

ignored by EDA tools (the examples do not show the word Format).

3) Certain Reserved Parameter names allow only certain <data_format> selections, as

described below.

4) The <data_format> selection of Value and Default are always mutually exclusive.

Certain parameters may require Value or Default, but Value and Default are not

allowed to be present together for the same parameter.

5) <data_format> is always required for selections other than Value.

6) Default is optional for <data_format> Range, List, Corner, Increment and Steps.

7) Default is not allowed for Usage Out parameters.

8) Default is not allowed for <data_format> Table, Gaussian, Dual-Dirac and DjRj.

9) Additional rules apply when <data_format> is Table. The format for <data>

describes a set of rows containing data values. Each row has its set of column data

values enclosed by parentheses “(“ and “)”. Each row contains the same number of

column values. Any or all of these columns may have different data types. For this

case the <data_type> argument is either a list of data types (one for each column), or

a single data type. If it is a single data type then this type shall be applied to all of

the columns in each row.

10) <data_format> Corner is not allowed for Usage Out.

11) Description is optional.

RESERVED WORD RULES

Usage, Type, Format and Default and their allowed values are reserved names in the parameter

definition (.ami) file.

Usage <usage>:

Required for all AMI parameters, where <usage> must be substituted by one of the following:

In

Parameter value is a required input to the AMI model

Out
Parameter value is coming from the AMI model

Info

Information for user or EDA tool

InOut

IBIS Version 6.0

187

Parameter value is a required input to the AMI model. The AMI model may return a

different value.

Note that the purpose of Usage Out or InOut is to provide a mechanism for the algorithmic model

to return values to the EDA tool to be used as described by this specification.

Type <data_type> or Type <type1><type2>…:

Required, where <data_type> is replaced by one of the entries listed below. For {Format} Table,

separate <type1> <type2>… entries are permitted for each column as discussed below, but Type

Tap is not permitted.

Float

Float numbers are in general represented by a floating point number that may be scaled

using a decimal exponent. A floating point number is represented by the significant digits,

and optionally a sign and decimal point. For example, -1.23e-3, 123e-3, 1.23, 1 are all of

type float.

Integer

Integers are numbers which are written without a fractional or decimal component, and fall

within -2147483648 and 2147483647. If scientific notation is used then the exponent must

be positive. For example, 65, 7, and -756, 123e3 are integers, but 1.6, 123e99 or 123e-2 are

not integers.

String

String is a sequence of ASCII characters enclosed in double quotes ("). As defined in ANSI

Standard X3.4-1986, the allowable ASCII characters consist of hexadecimal 20, 21, 23 to

7E, and the ASCII control characters 09 (HT), 0A (LF), and 0D (CR) for defining tabs and

line termination sequences. The double quote character 22 (") is not allowed inside strings.

Boolean

Acceptable values are True and False, without quotation marks. Boolean Type values are

not considered strings.

Tap

(For use by Tx and Rx equalizers)

The type Tap accepts only floating point values. Note that if the type Tap is used and the

parameter value provided is not a number, this shall be considered an error condition for

which EDA tool behavior is not specified.

A tapped delay line can be described by creating a separate parameter for each tap weight

and grouping all the tap weights for a given tapped delay line in a single parameter group

which is given the name of the tapped delay line. If in addition the individual tap weights

are each given a name which is their tap number (i.e., "-1" is the name of the first precursor

tap, "0" is the name of the main tap, "1" is the name of the first postcursor tap, etc.) and the

tap weights are declared to be of type Tap, then the EDA tool can assume that the individual

parameters are tap weights in a tapped delay line, and use that assumption to perform tasks

such as optimization. The model developer is responsible for choosing whether or not to

follow this convention.

A complete equalizer example featuring the Tap Type is provided later in this section.

IBIS Version 6.0

188

UI
Unit Interval. 1 UI is the inverse of the data rate frequency, for example 1 UI of a channel

operating at 10 Gb/s is 100 ps. UI parameter values are in units of UI (bit time). The

parameter may take on either floating point or integer values.

Format <data_format> <data> or <data_format><data>:

Required, except for the <data_format> selection of Value as noted below. The word “Format” as

part of the Format <data_format> <data> sequence is optional. Valid entries for the <data_format>

and <data> fields are:

Value <value>

Single value data. The model maker may provide any value without any restrictions within

the constraints of the Type of the variable. Note that Value and Default (defined below) are

mutually exclusive, and shall not be used together for the same parameter.

Range <typ value> <min value> <max value>

This defines a continuous range for which the user may select any value greater than or

equal to <min value> and less than or equal to <max value> within the constraints of the

Type of the variable

List <default value> <value> <value> <value> ... <value>

This defines a discrete set of values from which the user may select one value

List_Tip <default_entry><entry><entry><entry>…<entry>

This is an optional leaf of a parameter with Format List and it is followed by a String entry

for each entry in the List. The number of entries in List_Tip must be the same as the

number of entries in List. The n
th

 entry in List_Tip shall correspond to the n
th

 entry in List.

Quoted null entries are not permitted. All entries in List_Tip shall be unique, except that if

two entries in List are the same, then the corresponding List_Tip entries must also be the

same. List is required for List_Tip to be entered, and the word Format before List_Tip as in

(Format List_Tip ,,,) is not allowed.

Example:

 (Strength (Usage In) (Type Integer) (Description "Strength of Driver")

 (List 0 1 2 3 4) (Default 2)

 (List_Tip "Extra Weak" "Weak" "Nominal" "Strong" "Extra Strong"))

 Corner <typ value> <slow value> <fast value>

Corner is not allowed with Usage Out parameters. The selection of one value is

automatically carried out by the EDA tool based on its internal simulation corner setting

Increment <typ> <min> <max> <delta>

where min <= typ <= max and delta is always positive. After expansion, the expanded

values of the parameter are typ + N*delta where N is any positive or negative integer value

provided by the EDA tool during the expansion process so that: min <= expanded values

<= max

Steps <typ> <min> <max> <# steps>

Treat exactly like Increment with <delta> == (<max>-<min>)/<# steps>

Table and optional leaf Labels

IBIS Version 6.0

189

The Format Table states that this parameter consists of one or more columns of data, with

each row delimited by parentheses “(“ and “)”. All rows must contain the same number of

entries (columns). At least one row shall be included. Default is illegal when Format Table

is used.

The column entries shall be of Type Float, UI, Integer, String or Boolean.

Type Tap is illegal under Table. If only one Type is provided, then all Table entries shall

be of the specified type.

(Type <type>)

For Table only, Type can also be used to designate the entries for each column. In this case,

type entries shall be given for each column in the Table:

(Type <type1> <type2> <type3> ...)

Labels is an optional leaf within Table and it is followed by a String entry for each column

in the Table. Quoted null entries are permitted. Labels shall be positioned immediately

before the first row in a Table and are of the form:

(Labels <"label1"> <"label2"> <"label3"> ...)

If Table is used for a Reserved Parameter, the rules for the number of columns and their

meaning are described in the Reserved_Parameters section.

The EDA tool and the executable model file shall always transmit the entire contents of a

table through the AMI_parameters_in or AMI_parameters_out string (defined in Section

10.2 and illustrated in the examples below). Only the parameter name and values in the

table are included in the parameter string. The values in each row of the table are flattened

into a single row of values without the parentheses surrounding each row when producing

the parameter string.

For Usage Out and InOut, the number of rows returned by the executable model file may

differ from the number of rows documented in the parameter definition file, but a minimum

of one row shall be returned. Multiple AMI_GetWave calls are not required to return the

same number of rows. For Usage Out, a one-row Table is required in the parameter

definition file to serve as a template for single and multi-row tables. This can be used by

the EDA tool to reconstruct a sequence of data values returned by the executable model file

into a table with as many rows as needed, and optionally for parameter initialization before

being replaced by the actual Table data returned by the executable model file.

Examples:

Single Row Table where all numbers are Float (note that “1” is a legal float entry):

(fwd (Usage In) (Type Float)

 (Table

 (1 -0.169324 1.40308 0.33024)

)

 (Description "Application Description")

)

The EDA tool sends to the executable model file in the parameter string:

(fwd 1 -0.169324 1.40308 0.33024)

IBIS Version 6.0

190

Single Row, all numbers would be encoded as integers by the EDA tool:

(bit_pattern (Usage In) (Type Integer)

 (Table

 (1 1 1 1 0 0 0 1 0 0 1)

)

 (Description "Bit Pattern Sequence")

)

The EDA tool sends to the executable model file in the parameter string:

 (bit_pattern 1 1 1 1 0 0 0 1 0 0 1)

Multiple row Table example with Labels:

The optional Labels line is added above the first row. It is not sent or returned to/from the

executable model file, but is available to the EDA tool for information.

(poles (Usage InOut) (Type Float)

 (Table

 (Labels "complex_conj_flag" "real_part" "imag_part")

 (1 -5e8 0)

 (2 -9.4e8 8.3e8)

 (1 -7.3e8 0)

)

(Description "Two real poles and one complex pole")

)

The EDA tool sends to the executable model file in the parameter string:

(poles 1 -5e8 0 2 -9.4e8 8.3e8 1 -7.3e8 0)

An updated set with a different number of pole and row entries can be returned with a

similar sequence to be converted back into the same or a different number of rows.

Type used to specify the type entry for each column (the example above is modified with

Type entries for each column):

(poles (Usage InOut) (Type Integer Float Float)

 (Table

 (Labels "complex_conj_flag" "real_part" "imag_part")

 (1 -5e8 0)

 (2 -9.4e8 8.3e8)

 (1 -7.3e8 0)

)

(Description "Two real poles and one complex poles")

)

The encoding in the previous example is sent to the EDA tool and returned to the

executable model file.

Example of two rows with Type entries for each column (the fourth column numbers are

interpreted as UI values):

(pdf (Usage In) (Type Integer Integer Float UI Float)

 (Table

 (Labels "Row" "Bin number" "Time" "UI" "Probability")

 (1 -5 -5e-9 -1 1e-5)

IBIS Version 6.0

191

 (2 -4 -4e-9 -0.8 1e-4)

)

(Description "Probability Distribution Function Table")

)

The EDA tool sends to the executable model file in the parameter string:

(pdf 1 -5 -5e-9 -1 1e-5 2 -4 -4e-9 -0.8 1e-4 ...)

Example above, but with Usage Out (only one row is necessary in the parameter definition

file):

(pdf (Usage Out) (Type Integer Integer Float UI Float)

 (Table

 (Labels "Row" "Bin number" "Time" "UI" "Probability")

 (1 -5 -5e-9 -1 1e-5)

)

(Description "Probability Distribution Function Table")

)

One row is provided as a template, but the executable model file can return, in the

parameter string, different data and more than one row such as shown.

(pdf 1 -6 -6e-9 -1.2 3e-6 2 -5 -5e-9 -1 9e-6 ...)

Gaussian <mean> <sigma>

Gaussian defines a statistical distribution as the data Format, with mean and sigma

(standard deviation) specified by the “mean” and “sigma” floating point entries,

respectively. Gaussian mean and sigma values are assumed to be in units of UI when

declared as Type UI. Reserved_Parameters may define units for Gaussian values declared

as Type Float, as detailed below.

Dual-Dirac <mean> <mean> <sigma>

Dual-Dirac consists of a composite of two Gaussian data sets. Two separate means are

defined, but with a common sigma for each. Both mean entries and the sigma entry are

floating point values and are assumed to be in units of UI when declared as Type UI.

Reserved_Parameters may define units for Dual-Dirac values declared as Type Float, as

detailed below.

DjRj <minDj> <maxDj> <sigma>

DjRj defines the combination of deterministic and random jitter values, by convolution. Rj

is assumed to take on a Gaussian distribution with standard deviation value “sigma”, while

Dj is assumed to have a uniform distribution with minimum and maximum values “minDj”

and “maxDj”, respectively. All entries shall be floating point, and are assumed to be in

units of UI when declared as Type UI and in units of seconds when Type Float.

Default <value>:

When used with single value data, Default and Value are mutually exclusive, and shall not be used

together for the same parameter. In these situations, Default is a synonym of Value and does not

imply any additional meaning or actions. Default is not allowed for any Usage Out parameter

IBIS Version 6.0

192

types, and Table, Gaussian, Dual-Dirac and DjRj. Default is optional for Range, List, Corner,

Increment and Steps. When Default is specified for any of these parameter types, it shall be used

by the EDA tool to pick one value from all the possibilities for that parameter if the user does not

make such a selection.

If a Default <value> is specified, its value shall have the same Type as the parameter. For example,

if Type is Boolean, <value> shall be either True or False; if Type is Integer, <value> shall be an

integer. Also, if Default is specified, <value> shall be a member of the set of allowed values of the

parameter. If Default is not specified, the default value of the parameters shall be assumed by the

EDA tool to be the <typ> value.

Description <string>:

Description is a leaf that may appear in multiple locations, including after a Model Specific

Parameter, after a Reserved Parameter or after the name of the Algorithmic model. The location of

Description will determine whether it describes a parameter or the Algorithmic model as a whole.

The string following Description is used by the EDA tool to convey information to the end-user.

Description <string> is optional, but it is highly recommended for describing the Algorithmic

model and the Model Specific Parameters of the Algorithmic model. The Description string may

span multiple lines, but it is recommended that the text contained in the Description string should

not exceed 120 characters per line.

COMBINATION AND CORNER RULES

For Usage Out parameters, ({Format} <data_format> <data>) may be ignored by the EDA tool,

except when <data_format> is Table where at least a one-row Table is required in <data> to serve

as a template for single and multi-row tables.

Formats Value, Corner and List can be of any defined Types whereas Formats Range, Increment

and Steps can be of Types Float, UI, Integer and Tap only. Formats Gaussian, Dual-Dirac and DjRj

can only be of Types Float and UI. For Format Table, the column entries shall be of Type Float,

UI, Integer, String or Boolean. Type Tap is illegal for Format Table. If only one Type is provided,

then all Table entries shall be of the specified type. Type can also be used to designate the entries

for each column in the table. More information is provided in the definition of the Table format.

Note that modeling and simulating different corner cases is a fundamental concept in IBIS. For

each model instance, the EDA tool will make use of either the "Typ", "Min" or "Max" data

provided in the .ibs file, according to the user’s simulation setup.

As described in Section 9, "NOTES ON DATA DERIVATION METHOD" of this document, the

"Min" and "Max" data for the I-V tables and their corresponding voltage reference keywords,

[Ramp] and V-T tables represent the slow and fast behavior of the device, respectively. Following

the conservative approach, the "Max" value of C_comp represents the slow, and the "Min" value of

C_comp represents the fast behavior of the device.

For AMI parameters defined as Format Corner, the EDA tool will pick one of the three supplied

values (<typ value>, <slow value>, <fast value>) in the parameter definition file for any given

model instance. This selection is governed by the same internal corner variable in the EDA tool

that controls the selection of the "Typ", "Min", "Max" model data. <typ value> corresponds to

"Typ", <slow value> corresponds to "Min" (slow or weak performance) and <fast value>

IBIS Version 6.0

193

corresponds to "Max" (fast or strong performance). For AMI parameters, <slow value> does not

have to be less than <fast value>.

 For AMI parameter Types “Range”, “Increment” and “Steps” <min value>, <max value> does not

imply slow and fast corners, and the user may select any value provided by these parameters

regardless of what corner is used for the simulation. If the user does not make a selection for

parameter types “Range”, “List”, “Increment” and “Steps”, the EDA tool shall automatically use

the value defined by Default, if it exists, or the <typ value> otherwise (regardless of what corner is

used for the simulation).

When a [Model] that is associated with any of the pins listed under the [Diff Pin] keyword contains

the [Algorithmic Model] keyword, the tdelay_*** parameters in the fourth, fifth and sixth columns

of the [Diff Pin] keyword are ignored in AMI channel characterization simulations, i.e., they are

treated as if their value would be zero.

Table 17 summarizes the relationships between the different Format and Data Types for Reserved

or Model Specific Parameters.

Table 17 – Allowable Data Types for Format Values

Format
Data Type

Float UI Integer String Boolean Tap

Corner X X X X X X

DjRj X X

Dual-Dirac X X

Gaussian X X

Increment X X X X

List X X X X X X

Range X X X X

Steps X X X X

Table X X X X X

Value X X X X X X

PROCESSING AND PASSING PARAMETER STRING RULES

The parameter string passed in and out of the executable model file (described in the sections

AMI_parameters_in, AMI_parameters_out and AMI_memory_handle below) is formatted the

same way as the tree data structure in the parameter definition file with the following exceptions.

The EDA tool shall process the content of the parameter definition file such that

1) the “Reserved_Parameters” and “Model_Specific” branch names and their associated

open and close parentheses "()" are not included in the AMI_parameters_in string, and

2) the AMI parameter branches with Usage In or Usage InOut are converted to leaves for

the AMI_parameters_in string, possibly incorporating user selections. In this

IBIS Version 6.0

194

conversion each AMI parameter branch name becomes a leaf name in the

AMI_parameters_in string and each leaf name is followed by a white space, a value and

a closing parenthesis ")"

The executable model shall generate a parameter string that is consistent with the content of the

parameter definition file so that

1) the “Reserved_Parameters” and “Model_Specific” branch names and their associated

open and close parentheses "()" are not included in the AMI_parameters_out string, and

2) the AMI parameter branches Usage Out or Usage InOut are returned as leaves in the

AMI_parameters_out string.

The EDA tool shall pass a string to the executable model through the AMI_parameters_in

argument. This string shall contain all of the leaf-formatted Usage In and Usage InOut AMI

parameters if there are any defined in the .ami file. No other information may be included in this

string. The string shall always include the root name of the parameter tree, even if there are no

parameters to pass to the algorithmic model.

The executable model shall return a string to the EDA tool through the AMI_parameters_out

argument. This string shall contain all of the leaf formatted Usage InOut and Usage Out AMI

parameters if there are any defined in the parameter definition file. No other information may be

included in this string. The string shall always include the root name of the parameter tree, even if

there are no parameters to return to the EDA tool.

For Usage In, the value in the AMI parameter leaves are determined by the EDA tool based on the

AMI parameter branches in the parameter definition file. For Usage Out, the value in the AMI

parameter leaves are determined by the Algorithmic Model. For Usage InOut, the value in the

AMI parameter leaves are first determined by the EDA tool based on the AMI parameter branches

in the parameter definition file and passed into the Algorithmic Model which may return a new

value in the AMI parameter leaves after some processing.

GENERAL RESERVED PARAMETERS

The parameter definition file shall have a branch with the heading “Reserved_Parameters”. This

branch shall contain all the Reserved Parameters for the model.

The following Reserved Parameters are used by the EDA tool and, unless otherwise noted, are

required if the [Algorithmic Model] keyword is present. The entries following the Reserved

Parameter names determine their Usage, Type and Default values. Their values may be defined

using either Default or Value but not both. Description is optional.

Additional optional Reserved Parameters are defined in separate sections elsewhere in this

document.

Parameter: AMI_Version

Required: Yes for AMI_Version 5.1 and above, illegal before AMI_Version 5.1

Descriptors:

Usage: Info

Type: String

Format: Value

IBIS Version 6.0

195

Default: <string_literal>

Description: <string>

Definition: Tells EDA tool what version of the AMI modeling language is supported.

Usage Rules: AMI_Version is required in the parameter definition files of AMI models which are

written in compliance with the IBIS Version 5.1 or later specification(s), but it is not allowed in the

parameter definition files of AMI models which are written in compliance with the IBIS Version

5.0 specification. When required, this parameter shall be the first parameter defined in the

Reserved_Parameters branch of the parameter definition file.

The value of this parameter shall be “5.1” for AMI models written in compliance with the IBIS

Version 5.1 specification and “6.0” for AMI models written in compliance with the IBIS Version

6.0 specification. The absence of AMI_Version indicates that the AMI model was written in

compliance with the IBIS Version 5.0 specification.

The version numbers of .ibs files and AMI models do not have to match. The EDA tool is

expected to execute the AMI model according to the rules of the specification which corresponds to

its version number.

Other Notes: For AMI_Version 5.1 or later.

Throughout this document, the shorthand, AMI_Version <version_number>, is used to indicate the

minimum AMI_Version level that is supported. If the AMI_Version is not used, then the AMI

model is processed at the level defined in [IBIS Ver] 5.0. In some cases, it will be noted that a rule

has changed, has become more restrictive or more relaxed for a specified AMI_Version level.

Examples:

(AMI_Version (Usage Info) (Type String) (Value “5.1”)

 (Description “Valid for AMI_Version 5.1 and above”)

)

(AMI_Version (Usage Info) (Type String) (Default “6.0”)

 (Description “Valid for AMI_Version 6.0”)

)

Parameter: Init_Returns_Impulse

Required: Yes

Descriptors:

Usage: Info

Type: Boolean

Format: Value

Default: <Boolean_literal>

Description: <string>

Definition: Tells EDA tool whether the AMI_Init function returns a modified impulse response.

Usage Rules: When the Boolean_literal value is set to “True”, the model returns the convolution

of the impulse response with the impulse response of the equalization.

Other Notes:

Examples:

(Init_Returns_Impulse (Usage Info) (Type Boolean) (Default True)

 (Description “Valid for all AMI_Version levels”)

IBIS Version 6.0

196

)

(Init_Returns_Impulse (Usage Info) (Type Boolean) (Value True)

 (Description “Valid for all AMI_Version levels”)

)

Parameter: GetWave_Exists

Required: Yes

Descriptors:

Usage: Info

Type: Boolean

Format: Value

Default: <Boolean_literal>

Description: <string>

Definition: Tells EDA tool whether the AMI_GetWave is implemented in this model

Usage Rules: Note that if Init_Returns_Impulse is set to “False”, then GetWave_Exists SHALL be

set to “True”.

Other Notes:

Examples:

(GetWave_Exists (Usage Info) (Type Boolean) (Default True)

 (Description “Valid for all AMI_Version levels”)

)

(GetWave_Exists (Usage Info) (Type Boolean) (Value True)

 (Description “Valid for all AMI_Version levels”)

)

Parameter: Use_Init_Output

Required: No, and legal only before AMI_Version 5.1

Descriptors:

Usage: Info

Type: Boolean

Format: Value

Default: <Boolean_literal>

Description: <string>

Definition: Tells EDA tool whether to use AMI_Init output for AMI_GetWave input

Usage Rules: When Use_Init_Output is set to “True”, the EDA tool is instructed to use the output

impulse response from the AMI_Init function when creating the input waveform presented to the

AMI_GetWave function.

If the Reserved Parameter, Use_Init_Output, is set to “False”, EDA tools will use the original

(unfiltered) impulse response of the channel when creating the input waveform presented to the

AMI_GetWave function.

The algorithmic model is expected to modify the waveform in place.

IBIS Version 6.0

197

Use_Init_Output is optional. The default value for this parameter is “True”.

If Use_Init_Output is “False”, GetWave_Exists shall be “True”.

Other Notes:

Examples:

(Use_Init_Output (Usage Info) (Type Boolean) (Default True)

 (Description “Use_Init_Output is valid only when AMI_Version is omitted”)

)

The following Reserved Parameters are optional. If the following parameters are not present, the

values are assumed as “0”.

Parameter: Max_Init_Aggressors

Required: No

Descriptors:

Usage: Info

Type: Integer

Format: Value

Default: <numeric_literal>

Description: <string>

Definition: Tells the EDA tool how many aggressor Impulse Responses the AMI_Init function

is capable of processing.

Usage Rules: Its value is assumed “0” if Max_Init_Aggressors is not present.

Other Notes:

Examples:

(Max_Init_Aggressors (Usage Info) (Type Integer) (Default 5)

 (Description “Valid for all AMI_Version levels”)

)

(Max_Init_Aggressors (Usage Info) (Type Integer) (Value 5)

 (Description “Valid for all AMI_Version levels”)

)

Parameter: Ignore_Bits

Required: No

Descriptors:

Usage: Info

Type: Integer

Format: Value

Default: <numeric_literal>

Description: <string>

Definition: Tells the EDA tool how long the time variant model takes to complete initialization.

IBIS Version 6.0

198

Usage Rules: This parameter is meant for AMI_GetWave functions that model how equalization

adapts to the input stream. The value in this field tells the EDA tool how many bits of the

AMI_GetWave output should be ignored.

Its value is assumed “0” if Ignore_Bits is not present.

Other Notes:

Examples:

(Ignore_Bits (Usage Info) (Type Integer) (Default 1000)

 (Description “Valid for all AMI_Version levels”)

)

(Ignore_Bits (Usage Info) (Type Integer) (Value 1000)

 (Description “Valid for all AMI_Version levels”)

)

Table 18 – General Rules and Allowable Usage for General Reserved Parameters

Reserved Parameter
General Rules Allowable Usage

Required Default Info In Out InOut

AMI_Version
1
 Yes -- X

GetWave_Exists Yes -- X

Ignore_Bits No 0 X

Init_Returns_Impulse Yes -- X

Max_Init_Aggressors No 0 X

Use_Init_Output
2
 No True X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

Table 19 – Allowable Data Types for General Reserved Parameters

Reserved Parameter
Data Type

Float UI Integer String Boolean

AMI_Version
1
 X

GetWave_Exists X

Ignore_Bits X

Init_Returns_Impulse X

Max_Init_Aggressors X

Use_Init_Output
2
 X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

IBIS Version 6.0

199

Table 20 – Allowable Data Formats for General Reserved Parameters

Reserved Parameter

Data Format

Value Range Corner List Increment Steps Gaussian Dual-

Dirac

DjRj Table

AMI_Version1 X

GetWave_Exists X

Ignore_Bits X

Init_Returns_Impulse X

Max_Init_Aggressors X

Use_Init_Output2
 X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

MODEL SPECIFIC PARAMETERS

The following section describes the Model Specific (user-defined) Parameters. The model maker

can specify any number of Model Specific Parameters for their model. The Model Specific

Parameter branch shall begin with the reserved words “Model_Specific”.

Example:

 (Model_Specific

 (CTLE

 (Description "CTLE consists of two selectable sets of Poles and Zeros")

 (Row (Range 0 0 1) (Type Integer) (Usage InOut) (Description "Two CTLEs"))

 (Poles (Usage In) (Description "CTLE Poles")

 (Type Integer Float Float Float Float Float Float)

 (Table

 (Labels "Row" "Real_1" "Imag_1" "Real_2" "Imag_2" "Real_3" "Imag_3")

 (0 -3.06e+9 9.94e+9 -2.91e+9 5.94e+9 -1.36e+9 0.0)

 (1 -1.03e+10 0.0 -4.21e+9 5.42e+9 0.0 0.0)

)

)

 (Zeros (Usage In) (Description "CTLE Zeros")

 (Type Integer Float Float Float Float)

 (Table

 (Labels "Row" "Real_1" "Imag_1" "Real_2" "Imag_2")

 (0 -3.62e+9 0.0 -2.33e+9 6.68e+9)

 (1 -2.93e+9 1.10e+9 0.0 0.0)

)

)

)

)

IBIS Version 6.0

200

TAPPED DELAY LINE EXAMPLE

A tapped delay line can be described by creating a separate parameter for each tap weight and

grouping all the tap weights for a given tapped delay line in a single parameter group which is

given the name of the tapped delay line. If in addition the individual tap weights are each given a

name which is their tap number (i.e., "-1" is the name of the first precursor tap, "0" is the name of

the main tap, "1" is the name of the first postcursor tap, etc.) and the tap weights are declared to be

of type Tap, then the EDA tool can assume that the individual parameters are tap weights in a

tapped delay line, and use that assumption to perform tasks such as optimization. The model

developer is responsible for choosing whether or not to follow this convention.

The type Tap implies that the parameter takes on floating point values. Note that if the type Tap is

used and the parameter name is not a number, this is an error condition for which EDA tool

behavior is not specified.

Example:

(mySampleAMI | Parameter Definition File name

 (Description "Sample AMI File")

 (Reserved_Parameters | Required heading

 (AMI_Version (Usage Info) (Type String) (Value "6.0")

 (Description "Valid for AMI_Version 5.1 and above"))

 (Ignore_Bits (Usage Info) (Type Integer) (Value 21)

 (Description "Ignore 21 Bits"))

 (Max_Init_Aggressors (Usage Info) (Type Integer) (Value 25))

 (Init_Returns_Impulse (Usage Info) (Type Boolean) (Value True))

 (GetWave_Exists (Usage Info) (Type Boolean) (Value True))

) | End Reserved_Parameters

 (Model_Specific | Required heading

 (txtaps

 (-2 (Usage InOut) (Type Tap) (Range 0.1 -0.1 0.2)

 (Description "Second Precursor Tap"))

 (-1 (Usage InOut) (Type Tap) (Range 0.2 -0.4 0.4)

 (Description "First Precursor Tap"))

 (0 (Usage InOut) (Type Tap) (Range 1 0.4 1)

 (Description "Main Tap"))

 (1 (Usage InOut) (Type Tap) (Range 0.2 -0.4 0.4)

 (Description "First Postcursor Tap"))

 (2 (Usage InOut) (Type Tap) (Range 0.1 -0.1 0.2)

 (Description "Second Postcursor Tap"))

) | End txtaps

) | End Model_Specific

) | End mySampleAMI

IBIS Version 6.0

201

10.4 RESERVED PARAMETERS FOR DATA MANAGEMENT

Information for simulation involving algorithmic models may be contained in files other than

the .ibs file, the AMI parameter definition file, or the executable model file. Parameters related to

these other files, called supporting files, are described below.

Parameter: Supporting_Files

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info

Type: String

Format: Table

Default: (Illegal)

Description: <string>

Definition: Supporting_Files contains strings of file names and/or directory names to point to

files and/or directories which are used by the IBIS-AMI executable model directly or by the EDA

tool (for example to generate the channel impulse response) to function properly. Supporting_Files

is organized as a table containing a single column and one or more rows, in which each file name

or directory name entry must be placed into a separate row. The file names or directory names may

be written with or without a path, but in either case, they must be expressed relative to the location

of the .ami file in which the Supporting_Files parameter is found. (The AMI executable models

and the parameter files are all required to be in the same directory as the .ibs file in which they are

declared). Path separators in the entries of Supporting_Files must be forward slashes "/". Back

slashes “\” are not allowed. The EDA tool is responsible for making any operating system-specific

adjustments (for example, replacing forward slashes "/" with backslashes "\") if necessary. The last

character of this string shall not be a forward slash “/”. A Supporting_Files entry may not be an

empty string “”, or a string containing a period alone “.”.

Usage Rules: The purpose of the Supporting_Files parameter is to enumerate all of the supporting

files of an AMI model. This is important in situations when the EDA tool needs to know about the

supporting files of an AMI model, for example to copy the original model files into its own

simulation model library. For this reason, all supporting files of an AMI model must be listed in

the Supporting_Files parameter, either using individual file names, or using directory names.

When directory names are used in this parameter, it is implied that all of the files and subdirectories

in that directory are needed by the AMI model. A file definition is legal but redundant if the

directory in which it is located is also defined in a Supporting_Files entry.

Other Notes: The EDA tool is not expected to make wildcard expansions (globbing) for any

characters in the string.

Example:

(Supporting_Files (Usage Info) (Type String)

 (Description

 "Additional files and directories required by this model")

 (Table

 ("my_stuff_dir")

 ("my_deeper_stuff_dir/here")

 ("m1.s4p")

IBIS Version 6.0

202

 ("my_special_dir/m2.s4p")

)

)

Parameter: DLL_Path

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: In

Type: String

Format: Value

Default: <string literal>

Description: <string>

Definition: The EDA tool is responsible for recognizing this parameter name and replacing the

value declared in the .ami file with a string that contains the path to the directory where the

executable model file (called “DLL” here and below) and .ami files reside. The Value specified in

the .ami file shall be ignored by the EDA tool. The value of DLL_Path passed to the DLL can

either be an absolute path, or a path relative to the current working directory of the process running

the DLL. In this string, the path separator is the forward slash "/". Back slashes “\” are not allowed.

The model is responsible for making any operating system-specific adjustments (for example,

replacing forward slashes "/" with backslashes "\") if necessary.

The last character of the value passed to the DLL shall not be a forward slash “/”. To access a

supporting file, the DLL should create a file name by creating a string consisting of the value of the

DLL path, convert forward slashes “/” to backslashes “\” on operating systems that require a

backslash “\” as a path separator, append a forward slash “/” or backslash “\” as appropriate to the

operating systems, and then append the name of the file. If the EDA tool chooses to pass a relative

path and if the current working directory (CWD) is where the DLL resides then DLL_Path should

be a period “.”.

Usage Rules:

Other Notes: A DLL should not rely on the current working directory (CWD) set by the EDA tool

or simulator to determine the locations of files. If DLL_Path is a relative path name then the DLL

shall assume that it is a relative path from the CWD, and the EDA tool is responsible for setting the

CWD to ensure that the relative DLL_Path is correct. The DLL shall not change the CWD. The

EDA tool is not expected to make wildcard expansions (globbing) for any characters in the string.

Example:

(DLL_Path (Usage In) (Type String) (Value "placeholder")

 (Description "Path to where the DLL is located"))

Parameter: DLL_ID

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: In

Type: String

IBIS Version 6.0

203

Format: Value

Default: <string literal>

Description: <string>

Definition: The EDA tool is responsible for recognizing this parameter name and replacing the

value declared in the .ami file with a string that contains a unique alphanumeric identifier. The

algorithmic model is responsible for using DLL_ID as the base name for any data files that the

model creates, either for use as temporary storage or for recording output data. The use of DLL_ID

helps guarantee that multiple instances of the same model (or different models from the same

vendor) do not mix up data as a result of collisions between temporary or permanent file names.

Usage Rules:

Other Notes:

Example:

DLL_ID (Usage In) (Type String) (Value "placeholder")

 (Description "Unique base name for each AMI model instance and run"))

Tables summarizing the reserved parameters for supporting files are shown below.

Table 21 – General Rules and Allowable Usage for Supporting Files Reserved Parameters

Reserved Parameter
General Rules Allowable Usage

Required Default Info In Out InOut

DLL_ID No No

DLL_ID

 X

DLL_Path No No

DLL_Path

 X

Supporting_Files No None X

Table 22 – Allowable Data Types for Supporting Files Reserved Parameters

Reserved Parameter
Data Type

Float UI Integer String Boolean

DLL_ID X

DLL_Path X

Supporting_Files X

Table 23 – Allowable Data Formats for Supporting Files Reserved Parameters

Reserved Parameter

Data Format

Value Range Corner List Increment Steps Gaussian Dual-

Dirac

DjRj Table

IBIS Version 6.0

204

Reserved Parameter Data Format

DLL_ID X

DLL_Path X

Supporting_Files X

10.5 JITTER AND NOISE RESERVED PARAMETERS

Jitter introduced by transmitter and receiver buffers, and the noise sensitivity of the receiver, may

be described using AMI Reserved Parameters. These Jitter and Noise parameters are described

below.

Note:

If the Jitter and Noise parameters are Usage Info, the EDA tool shall obtain their values from the

AMI parameter (.ami) file, optionally through a user interface if user selections are available or

needed.

If these parameters are Usage Out, the EDA tool shall use the values returned by the AMI_Init

function. It is the model maker’s responsibility to make sure that the AMI_Init function returns the

appropriate value in these parameters to the EDA tool to achieve successful simulations.

The model’s AMI_GetWave function may also return values in these parameters to the EDA tool,

and these values are not required to be the same as the values previously returned by the AMI_Init

function. The EDA tool may report the values returned by the AMI_GetWave function to the user,

but these values shall not be used by the EDA tool to modify or calculate parameter values passed

into simulation models in subsequent function calls or simulations, or to modify or calculate the

simulation results in any way.

Tx-only Reserved Parameters

These Reserved Parameters only apply to Tx algorithmic models. There parameters are optional.

If these parameters are not specified, the values default to no jitter specified in the model (“0”

jitter).

Parameter: Tx_Jitter

Required: No

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Gaussian, Dual-Dirac, DjRj, Table

Default: (Illegal)

Description: <string>

Definition: Tells EDA tool how much jitter exists at the input to the transmitter’s analog output

buffer.

Usage Rules: For formats Gaussian, Dual-Dirac and DjRj, entries are assumed to be in units of UI

when declared as Type UI and in units of seconds when Type Float.

For the Table format, only three table columns are permitted, which shall be entered in the

following order:

Row_number Time Probability, or

Row_number UI Probability

IBIS Version 6.0

206

where each Row_number is an integer (positive or negative), each Time value is a floating point

number in seconds or a bit time in units of UI, and each Probability is a unitless floating point

number. The Type for each column must be specified when Format Table is used, as in:

(Type Integer Float Float)

(Type Integer UI Float)

Other Notes: For compatibility with earlier versions, (Type Float) and (Type UI) are permitted for

data using the Table format, with Type Float signifying that the three column data types are Integer,

Float and Float, and Type UI signifying that the three column data types are Integer, UI and Float.

However, these variations are discouraged.

Default is not shown in the examples below.

Examples:

(Tx_Jitter (Usage Info) (Type Float)

 (Gaussian 0.2e-12 0.03e-12)

)

(Tx_Jitter (Usage Info) (Type Float)

 (Dual-Dirac 3e-12 6e-12 0.5e-12)

)

(Tx_Jitter (Usage Info) (Type Float)

 (DjRj 0 6E-12 1.3E-12)

)

(Tx_Jitter (Usage Info) (Type Integer Float Float)

(Table

(Labels “Row_No” “Time” “Probability”)

(-5 -5e-12 1e-10)

(-4 -4e-12 3e-7)

(-3 -3e-12 1e-4)

(-2 -2e-12 1e-2)

(-1 -1e-12 0.29)

(0 0 0.4)

(1 1e-12 0.29)

(2 2e-12 1e-2)

(3 3e-12 1e-4)

(4 4e-12 3e-7)

(5 5e-12 1e-10)

)

)

Parameter: Tx_DCD

Required: No

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, Range, Corner, List, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition:

IBIS Version 6.0

207

Tx_DCD (Transmit Duty Cycle Distortion) defines half the peak to peak clock duty cycle

distortion to be added to the behavior implemented by the EDA tool by modifying the stimulus

input or by post processing the simulation.

Time(n) = n * bit_time + Tx_DCD * (-1.0)
n

Where:

 n*bit_time is the ideal time of the nth clock.

 Time(n) is the time of the nth clock modified when creating input waveforms for the Tx.

Entries are assumed to be in units of seconds when declared as Type Float. Note that all equations

using jitter parameters that can be defined as UI shall be assumed to seconds in these formulae.

Usage Rules:

Other Notes:

Examples:

(Tx_DCD (Usage Info) (Type Float)

 (Range 2e-12 1e-12 3e-12))

The following optional Reserved Parameters are used to specify impairments for the transmitter

output. These budgets specify the impairment as measured at the TX output (i.e. the transmitter

output is expected to be directly modulated by these amounts). This data is used by the simulator

to either modify the input stimulus presented to the algorithmic model or when post-processing the

results from the model; the budget values specified by these parameters are not passed directly to

the model itself.

Parameter: Tx_Rj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The standard deviation of a white Gaussian phase noise process at the transmitter

which is to be added to the behavior implemented by the EDA tool by modifying the stimulus input

or by post processing the simulation results. Entries are assumed to be in units of seconds when

declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

Time(n) = n * bit_time + Tx_Rj * gaussian_rand()

Where gaussian_rand() is a function that returns floating point numbers between -inf and +inf.

The distribution of these numbers shall be a white Gaussian distribution centered at 0.0 with a

IBIS Version 6.0

208

standard deviation of 1.0. The EDA tool can protect against abs(Tx_Rj*gaussian_rand()) >

0.5UI.

Example:

(Tx_Rj (Usage Info) (Corner 0.005 0.006 0.004) (Type UI)

 (Description "Tx Random Jitter in UI."))

Parameter: Tx_Dj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The worst case half the peak to peak variation at the transmitter implemented by the

EDA tool by modifying the stimulus input or by post processing the simulation results. Tx_Dj shall

include all deterministic and uncorrelated bounded jitter that is not accounted for by Tx_DCD, and

Tx_Sj. Entries are assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

Time(n) = n * bit_time + 2.0 * Tx_Dj * rand()

Where rand() is a function that returns floating point numbers between -0.5 and +0.5 with

white uniform distribution.

Example:

(Tx_Dj (Usage Info) (Value 0.1) (Type UI)

 (Description "Tx Bounded Jitter in UI."))

Parameter: Tx_Sj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: Half the peak to peak amplitude of a sinusoidal jitter which is to be added to the

behavior implemented directly by the transmitter model.

Usage Rules: If Tx_Sj_Frequency is not assigned (either in the model or by the user), Tx_Sj

should be ignored. Entries are assumed to be in units of seconds when declared as Type Float.

IBIS Version 6.0

209

Other Notes: Time is calculated as follows:

 Time(n) = n * bit_time + Tx_Sj * sin((n * bit_time * 2.0 * Pi) * Tx_Sj_Frequency)

Example:

(Tx_Sj (Usage Info) (Corner 0.005 0.006 0.004) (Type UI)

 (Description "Tx Sinusoidal Jitter in UI."))

Parameter: Tx_Sj_Frequency

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The frequency, in hertz, of the sinusoidal jitter at the transmitter.

Usage Rules: If Tx_Sj_Frequency is not assigned (either in the model or by the user), Tx_Sj

should be ignored.

Other Notes: Time is calculated as follows:

Time(n) = n * bit_time + Tx_Sj * sin((n * bit_time * 2.0 * Pi) * Tx_Sj_Frequency)

Example:

(Tx_Sj_Frequency (Usage Info) (Corner 6.5E7 6.5E7 6.5E7) (Type Float)

 (Description "Tx Sinusoidal Jitter Frequency in Hz."))

Rx-only Reserved Parameters

These Reserved Parameters only apply to Rx algorithmic models. These parameters are optional.

If the parameters are not specified, the values default to “0”.

Parameter: Rx_Clock_PDF

Required: No

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Gaussian, Dual-Dirac, DjRj, Table

Default: (Illegal)

Description: <string>

Definition: Tells EDA tool the probability density function of the recovered clock.

IBIS Version 6.0

210

Usage Rules: For formats Gaussian, Dual-Dirac and DjRj, entries are assumed to be in units of UI

when declared as Type UI and in units of seconds when Type Float.

For the Table format, only three table columns are permitted, which shall be entered in the

following order:

Row_number Time Probability, or

Row_number UI Probability

where each Row_number is an integer (positive or negative), each Time value is a floating point

number in seconds or a bit time in units of UI, and each Probability is a unitless floating point

number. The Type for each column must be specified when Format Table is used, as in:

(Type Integer Float Float)

(Type Integer UI Float)

Other Notes: For compatibility with earlier versions, (Type Float) and (Type UI) are permitted for

data using the Table format, using the Table format, with Type Float signifying that the three

column data types are Integer, Float and Float, and Type UI signifying that the three column data

types are Integer, UI and Float. However, these variations are discouraged.

Examples:

(Rx_Clock_PDF (Usage Info) (Type Float)

 (Gaussian 0.2e-12 0.03e-12)

)

(Rx_Clock_PDF (Usage Info) (Type Float)

 (Dual-Dirac 3e-12 6e-12 0.5e-12)

)

(Rx_Clock_PDF (Usage Info) (Type Float)

 (DjRj 0 6E-12 1.3E-12)

)

(Rx_Clock_PDF (Usage Info) (Type Integer Float Float)

(Table

(Labels “Row_No” “Time” “Probability”)

(-5 -5e-12 1e-10)

(-4 -4e-12 3e-7)

(-3 -3e-12 1e-4)

(-2 -2e-12 1e-2)

(-1 -1e-12 0.29)

(0 0 0.4)

(1 1e-12 0.29)

(2 2e-12 1e-2)

(3 3e-12 1e-4)

(4 4e-12 3e-7)

(5 5e-12 1e-10)

)

)

Parameter: Rx_Receiver_Sensitivity

Required: No

IBIS Version 6.0

211

Descriptors:

Usage: Info, Out

Type: Float

Format: Value, Range, Corner, List, Increment, Steps

Default: <numeric_literal>

Description: <string>

Description: Tells the EDA tool the voltage needed at the receiver data decision point to ensure

proper sampling of the equalized signal.

Usage Rules: Entries are assumed to be in units of volts.

Other Notes:

Examples:

In the example below, 100 mV (above +100 mV or below -100 mV is needed to ensure the signal is

sampled correctly).

(Rx_Receiver_Sensitivity (Usage Info) (Type Float)

(Value 0.1))

(Rx_Receiver_Sensitivity (Usage Info) (Type Float)

 (List 0.1 0.05 0.06 0.07 0.08 0.09 0.11))

(Rx_Receiver_Sensitivity (Usage Info) (Type Float)

 (Range 0.2 0.1 0.3))

(Rx_Receiver_Sensitivity (Usage Info) (Type Float)
(Corner 0.0 0.1 -0.1))

The following optional Reserved Parameters are used to specify characteristics of the receiver's

recovered clock. This data is used by the simulator when post-processing the results from the

model when the model does not return clock_times, or when Rx AMI_GetWave is not used; the

budget values specified by these parameters are not passed directly to the model itself. For Rx

models that do return clock_times by AMI_GetWave, these parameters represent the amount of

jitter that had already been implemented by Rx AMI_GetWave and already included in the returned

clock_times. For this reason, the EDA platform should NOT apply these jitter parameters again to

the Rx clock_times. These parameters are provided by the model creator to the EDA platform and

end users for the sole purpose that these jitters can be properly accounted for when Rx

AMI_GetWave is NOT used or Rx clock_times was not returned, in which cases the EDA platform

is responsible to apply these jitters to the Rx output."

"Rx_Clock_Recovery_Mean" is an AMI parameter of Type either Float or UI, Format either Value,

List, Range, Corner, Increment, or Steps, and Usage Info which defines a static offset, in seconds

or UI, between the recovered clock and the point half way between the PDF medians of

consecutive eye zero crossings.

Parameter: Rx_Clock_Recovery_Mean

Required: No, and illegal before AMI_Version 6.0

Descriptors:

IBIS Version 6.0

212

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: A static offset between the recovered clock and the point half way between the PDF

medians of consecutive eye zero crossings. Entries are assumed to be in units of seconds when

declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = ideal_time + Rx_Clock_Recovery_Mean

Where ideal_time is half way between the median of the eye crossing 0.0 on both sides of the

eye.

Examples:

(Rx_Clock_Recovery_Mean (Usage Info) (Value 0.05)

 (Type UI) (Description "Recovered Clock offset in UI."))

Parameter: Rx_Clock_Recovery_Rj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The standard deviation of a Gaussian phase noise exhibited by the recovered clock

and included in the clock_times vector returned by the AMI_GetWave function. Entries are

assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = ideal_time + Rx_Clock_Recovery_Rj * gaussian_rand()

Example:

 (Rx_Clock_Recovery_Rj (Usage Info) (Corner 0.005 0.006 0.004)

 (Type UI) (Description "RX Random Clock Jitter in UI."))

Parameter: Rx_Clock_Recovery_Dj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

IBIS Version 6.0

213

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The worst case half the peak to peak variation of the recovered clock.

Rx_Clock_Recovery_Dj shall include all deterministic and uncorrelated bounded jitter that is

included in the clock_times vector returned by the AMI_GetWave function and not accounted for

by Rx_Clock_Recovery_DCD and Rx_Clock_Recovery_Sj. Entries are assumed to be in units of

seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = ideal_time + 2.0 * Rx_Clock_Recovery_Dj * rand()

Example:

(Rx_Clock_Recovery_Dj (Usage Info) (Value 0.1) (Type UI)

 (Description "Tx Bounded Jitter in UI."))

Parameter: Rx_Clock_Recovery_Sj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: Half the peak to peak variation of a sinusoidal phase noise exhibited by the

recovered clock and included in the clock_times vector returned by the AMI_GetWave function.

Entries are assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = ideal_time + Rx_Clock_Recovery_Sj * sin(Pi * rand())

Example:

 (Rx_Clock_Recovery_Sj (Usage Info) (Corner 0.05 0.07 0.4) (Type UI)

 (Description "RX Sinusoidal Jitter in UI."))

Parameter: Rx_Clock_Recovery_DCD

Required: No, and illegal before AMI_Version 6.0

IBIS Version 6.0

214

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: Half the peak to peak variation of a clock duty cycle distortion exhibited by the

recovered clock and included in the clock_times vector returned by the AMI_GetWave function.

Entries are assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = ideal_time + Rx_Clock_Recovery_DCD * (-1.0)
n

Example:

 (Rx_Clock_Recovery_DCD (Usage Info) (Corner 0.008 0.016 0.005)

 (Type UI) (Description "RX Duty Cycle Distortion in UI."))

Rx_Clock_Recovery_Dj may be used as a repository of all deterministic jitter. However any

combination of Rx_Clock_PDF, Rx_Clock_Recovery_Dj, Rx_Clock_Recovery_Sj and

Rx_Clock_Recovery_DCD is allowed, but the the model maker should make sure that jitter

components are not double counted. Total clock recovery deterministic jitter that is included in the

clock_times vector returned by the AMI_GetWave function should be equal to the sum of

Rx_Clock_PDF, Rx_Clock_Recovery_Dj, Rx_Clock_Recovery_Sj and Rx_Clock_Recovery_DCD.

Total Clock Recovery Deterministic Jitter accounted for in clock_times:

actual_time = ideal_time + 2.0 * Rx_Clock_Recovery_Dj * rand()

 + Rx_Clock_Recovery_Sj * sin(Pi * rand())

 + Rx_Clock_Recovery_DCD * (-1.0)
n

 + <deterministic contribution from Rx_Clock_PDF>

The following optional Reserved Parameters are used to modify the statistics associated with

receiver's recovered clock. These parameters are used to account for jitter that is not included in

either the clock_times returned by Rx AMI_GetWave or the Rx_Clock_Recovery parameters. This

data is used by the simulator when post-processing the results from the model; the budget values

specified by these parameters are not passed directly to the model itself.

Parameter: Rx_Rj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

IBIS Version 6.0

215

Definition: The standard deviation of a Gaussian phase noise driven by impairments external to

the receiver that are input to the RX CDR, but are not included in the CDR clock_times output.

This phase noise is to be accounted for by the EDA tool, in both Statistical and Time-Domain

simulations. Entries are assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

clock_times(n) = time + Rx_Rj * gaussian_rand()

Where:

 time = ideal_time in Statistical, and Time-Domain when clock_times(n) is not available.

 time = clock_times(n) in Time-Domain when clock_times(n) is returned by Rx

AMI_GetWave.

Example:

 (Rx_Rj (Usage Info) (Corner 0.005 0.006 0.004) (Type UI)

 (Description "Rx Random Jitter in UI."))

Parameter: Rx_Dj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The worst case half peak to peak variation of the recovered clock, not including the

random jitter specified by Rx_Rj, Rx_Sj, or Rx_DCD. Rx_Dj shall include all deterministic and

uncorrelated bounded jitter that is not accounted for by Rx clock_times, Rx_Rj, or

Rx_Clock_Recovery parameters. This phase noise is to be accounted for by the EDA tool in both

Statistical and Time-Domain simulations. Entries are assumed to be in units of seconds when

declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = time + 2.0 * Rx_Dj * rand()

Where:

 time = ideal_time in Statistical, and Time-Domain when clock_times(n) is not available.

 time = clock_times(n) in Time-Domain when clock_times(n) is returned by Rx

AMI_GetWave.

Example:

 (Rx_Dj (Usage Info) (Value 0.1) (Type UI)

 (Description "Tx Bounded Jitter in UI."))

IBIS Version 6.0

216

Parameter: Rx_Sj

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: Half the peak to peak variation of a sinusoidal phase noise, but are not included in

the CDR clock_times output. This phase noise is to be accounted for by the EDA tool in both

Statistical and Time-Domain simulations. Entries are assumed to be in units of seconds when

declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = time + Rx_Sj * sin(Pi * rand())

Where:

 time = ideal_time in Statistical, and Time-Domain when clock_times(n) is not available.

 time = clock_times(n) in Time-Domain when clock_times(n) is returned by Rx

AMI_GetWave.

Example:

 (Rx_Sj (Usage Info) (Corner 0.05 0.07 0.04) (Type UI)

 (Description "RX Sinusoidal Jitter in UI."))

Parameter: Rx_DCD

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float, UI

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: Half the peak to peak variation of a clock duty cycle distortion. This phase noise is

to be accounted for by the EDA tool in both Statistical and Time-Domain simulations. Entries are

assumed to be in units of seconds when declared as Type Float.

Usage Rules:

Other Notes: Time is calculated as follows:

actual_time = time + Rx_DCD * (-1.0)
n

IBIS Version 6.0

217

Where:

 n is the nth clock.

 time = ideal_time in Statistical, and Time-Domain when clock_times(n) is not available.

 time = clock_times(n) in Time-Domain when clock_times(n) is returned by Rx

AMI_GetWave.

Example:
 (Rx_DCD (Usage Info) (Corner 0.008 0.016 0.005) (Type UI)

 (Description "RX Duty Cycle Distortion in UI."))

Rx _Dj may be used as a repository of all deterministic jitter not included in clock_times. However

any combination of Rx_ Dj, Rx_ Sj and Rx_ DCD is allowed, but the the model maker should

make sure that jitter components are not double counted. Total clock recovery deterministic jitter

that is not included in the clock_times vector returned by the AMI_GetWave function should be

equal to the sum of Rx_ Dj, Rx_ Sj and Rx_ DCD.

Total Clock Recovery Deterministic Jitter not accounted for in clock_times:

actual_time = time + 2.0 * Rx_Dj * rand()

 + Rx_Sj * sin(Pi * rand())

 + Rx_DCD * (-1.0)
n

The following optional Reserved Parameter is used to modify the statistics associated with the data

input to the receiver's sampling latch (a.k.a. 'slicer'). This data is used by the simulator when post-

processing the results from the model; the budget values specified by this parameter are not passed

directly to the model itself.

Parameter: Rx_Noise

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info, Out

Type: Float

Format: Value, List, Range, Corner, Increment, Steps

Default: <numeric_literal>

Description: <string>

Definition: The standard deviation, in Volts, of a white Gaussian random process, which is to be

added by the EDA tool to the signal measured at the sampling latch of a receiver.

Usage Rules: If Rx_Noise is Usage Out, then the EDA tool shall use the value returned by Rx

AMI_Init if Rx AMI_GetWave is not used. If Rx AMI_GetWave is used, then the EDA tool may

apply the value returned by each AMI_GetWave call to the waveform returned by that call to

AMI_GetWave, or use the average value of Rx_Noise returned by all calls to AMI_GetWave (after

Ignore_Bits), or the value of Rx_Noise returned by the last call to AMI_GetWave.

Other Notes: Time is calculated as follows:

wave(t) = wave(t) + Rx_Noise * gaussian_rand()

IBIS Version 6.0

218

Where wave(t) is the waveform returned by Rx AMI_GetWave.

Example:

 (Rx_Noise (Usage Info) (Value 0.010) (Type Float)

 (Description "Rx amplitude noise at sampling latch in Volts."))

Note:

The "Rx_Clock_Recovery Parameters" (Rx_Clock_PDF, Rx_Clock_Recovery_Mean,

Rx_Clock_Recovery_Rj, Rx_Clock_Recovery_Dj, Rx_Clock_Recovery_Sj and

Rx_Clock_Recovery_DCD, should be used by the simulator when analyzing the output of Rx

AMI_Init (for statistical analysis) or Rx AMI_GetWave (time domain) when Rx AMI_GetWave

does not return clock_times. When Rx AMI_GetWave returns clock_times, the simulator should

not use the "Rx_Clock_Recovery Parameters".

Note:

The "Rx Jitter Parameters" (Rx_Rj, Rx_Dj, Rx_Sj and Rx_DCD, should be used by the simulator

when analyzing the output of either Rx AMI_Init (for statistical analysis) or Rx AMI_GetWave

(for time domain analysis).

Tables summarizing the rules for the jitter, noise, and sensitivity reserved parameters are shown

below.

Table 24 – Allowable Data Types for Jitter and Noise Reserved Parameters

Reserved Parameter
General Rules Allowable Usage

Required Default Info In Out InOut

Rx_Clock_PDF No Clock

Centered

X X

Rx_Clock_Recovery_DCD No 0 X X

Rx_Clock_Recovery_Dj No 0 X X

Rx_Clock_Recovery_Mean No 0 X X

Rx_Clock_Recovery_Rj No 0 X X

Rx_Clock_Recovery_Sj No 0 X X

Rx_DCD No 0 X X

Rx_Dj No 0 X X

Rx_Noise No 0 X X

Rx_Receiver_Sensitivity No 0 X X

Rx_Rj No 0 X X

Rx_Sj No 0 X X

Tx_DCD No 0 X X

Tx_Dj No 0 X X

IBIS Version 6.0

219

Reserved Parameter General Rules Allowable Usage

Tx_Jitter No No Jitter X X

Tx_Rj No 0 X X

Tx_Sj No 0 X X

Tx_Sj_Frequency No Undefined X X

Table 25 – Allowable Data Types for Jitter and Noise Reserved Parameters

Reserved Parameter
Data Type

Float UI Integer String Boolean

Rx_Clock_PDF X X

Rx_Clock_Recovery_DCD X X

Rx_Clock_Recovery_Dj X X

Rx_Clock_Recovery_Mean X X

Rx_Clock_Recovery_Rj X X

Rx_Clock_Recovery_Sj X X

Rx_DCD X X

Rx_Dj X X

Rx_Noise X

Rx_Receiver_Sensitivity X

Rx_Rj X X

Rx_Sj X X

Tx_DCD X X

Tx_Dj X

Tx_Jitter X

Tx_Rj X

Tx_Sj X

Tx_Sj_Frequency X

Table 26 – Allowable Data Formats for Jitter and Noise Reserved Parameters

Reserved Parameter

Data Format

Value Range Corner List Increment Steps Gaussian Dual-

Dirac

DjRj Table

Rx_Clock_PDF X X X X

Rx_Clock_Recovery_DCD X X X X X X

IBIS Version 6.0

220

Reserved Parameter Data Format

Rx_Clock_Recovery_Dj X X X X X X

Rx_Clock_Recovery_Mean X X X X X X

Rx_Clock_Recovery_Rj X X X X X X

Rx_Clock_Recovery_Sj X X X X X X

Rx_DCD X X X X X X

Rx_Dj X X X X X X

Rx_Noise X X X X X X

Rx_Receiver_Sensitivity X X X X X X

Rx_Rj X X X X X X

Rx_Sj X X X X X X

Tx_DCD X X X X X X

Tx_Dj X X X X X X

Tx_Jitter X X X X

Tx_Rj X X X X X X

Tx_Sj X X X X X X

Tx_Sj_Frequency X X X X X X

With the exception of the "Table" format, the Tx_Jitter parameter has been essentially superseded

by the Reserved_Parameters Tx_Rj, Tx_Dj, Tx_Sj, Tx_Sj_Frequency, and Tx_DCD, which enable

SerDes transmitter jitter to be specified in greater detail. It is recommended for AMI model

developers to use these preferred jitter parameters when possible instead of Tx_Jitter. With the

exception of the "Table" format, the Rx_Clock_PDF parameter has been essentially superseded by

the Reserved_Parameters Rx_Clock_Recovery_Rj, Rx_Clock_Recovery_Dj,

Rx_Clock_Recovery_Sj, and Rx_Clock_Recovery_DCD, which enable SerDes receiver jitter to be

specified in greater detail. It is recommended for AMI model developers to use these preferred

jitter parameters when possible instead of Rx_Clock_PDF.

IBIS Version 6.0

221

10.6 REPEATERS

A Repeater is a type of device that is placed in the middle of the channel to compensate channel

loss. Repeaters consist of two categories, Redrivers and Retimers. A Redriver equalizes the

upstream channel signal and retransmits it to the downstream channel. The output signal is

continuously driven by the input signal. A Redriver does not have a clock-data recovery circuit

(CDR), and no retiming is performed when the Redriver retransmits the signal. A Retimer

equalizes the upstream channel signal, recovers the clock using a CDR and generates a digital

stimulus that is transmitted to the downstream channel.

A Repeater is modeled by two back-to-back input-output IBIS-AMI models as shown in Figure 30.

Figure 39 – Repeater model

The analog part of the Rx model represents the input termination at the device input. The analog

part of the Tx model represents the output impedance at the device output. The two algorithmic

models represent equalizers, clock data recovery or CDR circuits (if they exist) and/or pre-

emphasis inside the devices. In a Redriver, both algorithmic models can optionally implement the

AMI_GetWave function. In a Retimer, the Rx algorithmic model must implement AMI_GetWave

and the function must return clock times. The Retimer Tx algorithmic model can optionally

implement AMI_GetWave. The order of signal flow in a Repeater model is from Rx analog to Rx

algorithmic to Tx algorithmic to Tx analog. Looking from the Rx analog portion, the Rx

algorithmic block is assumed to have infinite input impedance. Looking from the Tx analog portion,

the Tx algorithmic block is assumed to have an output of an ideal voltage source.

A Repeater model is specified in a single .ibs file that includes both input and output models.

Rx
analog

model

Rx

algorithmic

model

Tx

algorithmic

model

Tx

analog

model

Repeater model

Rx IBIS model Tx IBIS model

IBIS Version 6.0

222

Keyword: [Repeater Pin]

Required: No

Description: Associates a differential Rx non-inv pin with a Tx non-inv pin to form a Repeater.

Sub-Params: tx_non_inv_pin

Usage Rules: Enter only Repeater pin pairs. The first column, [Repeater Pin] contains a non-inv

pin name of an entry in the [Diff Pin] section that represents an Input or Input_diff model

corresponding to the Rx part of the Repeater model. The second column, tx_non_inv_pin contains

a non-inv pin name of an entry in the [Diff Pin] section that represents an Output or Output_diff

model corresponding to the Tx part of the Repeater model.

If [Repeater Pin] is present, the [Model]s associated with the pins listed under [Repeater Pin] shall

contain [Algorithmic Model] sections. The AMI parameter definition files for the [Algorithmic

Model]s associated with the receiver (Model_type Input or Input_diff) shall contain the

Repeater_Type parameter.

Other Notes: Each line must contain two columns. A pin name may appear in only one [Repeater

Pin] record.

The column length limits are:

[Repeater Pin] 5 characters max

tx_non_inv_pin 5 characters max

Example:

[Repeater Pin] tx_non_inv_pin

3 11

AMI Reserved Parameters:

Parameter: Repeater_Type

Required: No, and illegal before AMI_Version 6.0

Descriptors:

Usage: Info

Type: String

Format: Value

Default: <string_literal>

Description: <string>

Definition: This Reserved Parameter identifies the type of Repeater associated with a Repeater

Rx model. Allowed values are “Redriver” and “Retimer”.

Usage Rules: This parameter is required if the Rx model is part of a Repeater Rx/Tx pair. A

Retimer Rx model shall contain AMI_GetWave (GetWave_Exists is True) and the AMI_GetWave

function shall return clock times. The [Model] associated with the AMI parameter definition file

containing Repeater_type shall be of Model_type Input or Input_diff. Further, the [Model] shall be

associated with a [Pin] listed under the [Repeater Pin] keyword, or with a differential pair that has

its non-inverting [Pin] listed under the [Repeater Pin] keyword.

Other Notes:

IBIS Version 6.0

223

Example:

(Repeater_Type (Usage Info) (Type String) (Value "Redriver"))

Tables summarizing the reserved parameters for Repeaters are shown below.

Table 27 – General Rules and Allowable Usage for Repeater Reserved Parameters

Reserved Parameter
General Rules Allowable Usage

Required Default Info In Out InOut

Repeater_Type No

(Required

with

[Repeater

Pin])

None X

Table 28 – Allowable Data Types for Repeater Reserved Parameters

Reserved Parameter
Data Type

Float UI Integer String Boolean

Repeater_Type X

Table 29 – Allowable Data Formats for Repeater Reserved Parameters

Reserved Parameter

Data Format

Value Range Corner List Increment Steps Gaussian Dual-

Dirac

DjRj Table

Repeater_Type X

As mentioned above, a Retimer Rx shall contain AMI_GetWave (GetWave_Exists is True) and the

AMI_GetWave function must return clock times. The simulation platform shall generate a digital

input to the Retimer Tx by sampling the Rx AMI_GetWave output waveform ½ UI after each clock

tick, The digital stimulus shall have values of -½ and +½.

In Repeater AMI simulations, both Repeater analog models are treated as if they are linear and

time-invariant. The incoming (upstream) analog channel of the Redriver, including the upstream Tx

analog model, the physical channel and the Repeater Rx analog model, is represented by an

impulse response. The outgoing (downstream) analog channel of the Repeater, including the

Repeater Tx analog model, the physical channel and the downstream Rx analog model, is

represented by another impulse response.

The time domain simulation flow for a Repeater link shown in Figure 40 is defined below.

IBIS Version 6.0

224

Figure 40 - Repeater link

Here Tx1 denotes the Repeater upstream channel (channel 1) Tx AMI model (including analog and

algorithmic models), Rx1 the Repeater Rx AMI model (including analog and algorithmic models),

Tx2 the Repeater Tx AMI model (including analog and algorithmic models) and Rx2 the Repeater

downstream channel (channel 2) Rx AMI model (including analog and algorithmic models).

Step 1. The simulation platform obtains the impulse response of the upstream analog channel,

which represents the combined impulse response of Tx1’s analog model, physical channel 1, and

Rx1’s analog model.

Step 2. The output of step 1 is presented to Tx1’s AMI_Init function and Tx1’s AMI_Init function

is executed.

Step 3. The output of step 2 is presented to Rx1’s AMI_Init function and Rx1’s AMI_Init function

is executed.

Step 4. The simulation platform obtains the impulse response of the downstream analog channel,

which represents the combined impulse response of Tx2’s analog model, physical channel 2, and

Rx2’s analog model.

Step 5. The output of step 4 is presented to Tx2’s AMI_Init function and Tx2’s AMI_Init function

is executed.

Step 6. The output of step 5 is presented to Rx2’s AMI_Init function and Rx2’s AMI_Init function

is executed.

Step 7. The simulation platform performs simulation on the upstream channel, which consists of

Tx1, physical channel 1, and Rx1, according to the AMI flow defined in the specification for

channels without Repeaters.

Step 8a. Redriver: The simulation platform uses the signal waveform at the output end of Rx1’s

algorithmic model in step 7, regardless whether Rx1’s AMI_GetWave exists or not, as the stimulus

of Tx2’s algorithmic model, regardless whether Tx2’s AMI_GetWave exists or not, and performs

simulation on the downstream channel, which consists of Tx2, physical channel 2 and Rx2,

according to the AMI flow defined in the spec for channels without Redrivers.

Step 8b. Retimer: The simulation platform samples the output waveform of Retimer Rx

AMI_GetWave at ½ UI after each clock tick returned by the function, generates a digital stimulus

Repeater

Rx

Tx1 Rx1 Tx2 Rx2 channel 1 channel 2

Repeater

Repeater

Tx

Incoming

(upstream)

channel

outgoing

(downstream)

channel

IBIS Version 6.0

225

as the input to Tx2’s algorithmic model, regardless whether Tx2’s AMI_GetWave exists or not,

and performs simulation on the downstream channel, which consists of Tx2, physical channel 2 and

Rx2, according to the AMI flow defined in the spec for channels without Redriver. The logic level

of the digital stimulus is 1 if sampled value >= Rx1’s Rx_Receiver_Sensitivity and 0 if sampled

value <= Rx1’s Rx_Receiver_Sensitivity. If –Rx1’s Rx_Receiver_Sensitivity < sampled value <

Rx1’s Rx_Reciver_Sensitivity, the logic level is unchanged from the previous bit. The digital

stimulus have values of -½ volt for logic 0 and +½ volt for logic 1.

Step 9. The simulation platform calls the AMI_Close function of each algorithmic model in Tx1,

Rx1, Tx2 and Rx2.

Since the Redriver output signal is driven continuously by the input analog signal and does not

have a sampling latch, clock times, if returned by a Redriver model, jitter parameters and the

Rx_Noise parameter specified in Redriver .ami files are ignored by the simulation platform. Since

the Retimer output signal is driven by a digital stimulus as described above in step 8b, jitter and

noise parameters specified in Retimer .ami files are applied according to the specification for

channels without Repeaters.

The statistical simulation flow for a Repeater link shown in Fig. 2 is defined below.

Step 1. The simulation platform obtains the impulse response of the upstream analog channel,

which represents the combined impulse response of Tx1’s analog model, physical channel 1, and

Rx1’s analog model.

Step 2. The output of step 1 is presented to the Tx1’s AMI_Init function and Tx1’s AMI_Init

function is executed.

Step 3. The output of step 2 is presented to the Rx1’s AMI_Init function and the Rx1’s AMI_Init

function is executed.

Step 4. The simulation platform obtains the impulse response of the downstream analog channel,

which represents the combined impulse response of Tx2’s analog model, physical channel 2, and

Rx2’s analog model.

Step 5. The output of step 4 is presented to Tx2’s AMI_Init function and Tx2’s AMI_Init function

is executed.

Step 6. The output of step 5 is presented to Rx2’s AMI_Init function and Rx2’s AMI_Init function

is executed.

Step 7a. Redriver: The simulation platform convolves impulse responses returned by Rx1’s

AMI_Init in step 3 and by Rx2’s AMI_Init in step 6 to obtained the full channel impulse response

and uses it to perform statistical simulation.

Step 7b. Retimer: The simulation platform uses the impulse responses returned by Rx1’s AMI_Init

in step 3 to perform a statistical simulation of channel 1. The simulation platform uses the impulse

responses returned by Rx2’s AMI_Init in step 6 to perform a statistical simulation of channel 2.

IBIS does not prohibit the use of multiple Repeaters, or a mixture of Redrivers and Retimers,

cascaded in a channel.

Example:

[IBIS Ver] 6.0

IBIS Version 6.0

226

[File Name] Redriver.ibs

[Component] Redriver

…

[Pin] signal_name model_name R_pin L_pin C_pin

1p Redriver_Rx_1p Redriver_Rx

1n Redriver_Rx_1n Redriver_Rx

2p Redriver_Tx_2p Redriver_Tx

2n Redriver_Tx_2n Redriver_Tx

[Diff_Pin] inv_pin vdiff tdelay_typ tdelay_min tdelay_max

1p 1n NA NA NA NA

2p 2n NA NA NA NA

[Repeater Pin]

1p 2p

[Model] Redriver_Rx

Model_type Input

…

[Algorithmic Model]

Executable Windows_VisualStudio10.0.30319_32 Redriver_Rx_32.dll Redriver_Rx.ami

Executable Windows_VisualStudio10.0.30319_64 Redriver_Rx_64.dll Redriver_Rx.ami

Executable Linux_gcc4.6.1_32 Redriver_Rx_32.so Redriver_Rx.ami

Executable Linux_gcc4.6.1_64 Redriver_Rx_64.so Redriver_Rx.ami

[End Algorithmic Model]

[Model] Redriver_Tx

Model_type Output

…

[Algorithmic Model]

Executable Windows_VisualStudio10.0.30319_32 Redriver_Tx_32.dll Redriver_Tx.ami

Executable Windows_VisualStudio10.0.30319_64 Redriver_Tx_64.dll Redriver_Tx.ami

Executable Linux_gcc4.6.1_32 Redriver_output_32.so Redriver_Tx.ami

Executable Linux_gcc4.6.1_64 Redriver_output_64.so Redriver_Tx.ami

[End Algorithmic Model]

[End]

IBIS Version 6.0

227

10.7 RESERVED PARAMETER AND DATA TYPE RULE SUMMARY TABLES

The tables below summarize the valid combinations of AMI Reserved Parameters, defaults, data

Types and data Formats.

Table 30 – General Rules and Allowable Usage for Reserved Parameters

Reserved Parameter
General Rules Allowable Usage

Required Default Info In Out InOut

AMI_Version
1
 Yes -- X

DLL_ID
3

No No

DLL_ID

 X

DLL_Path
3

No No

DLL_Path

 X

GetWave_Exists Yes -- X

Ignore_Bits No 0 X

Init_Returns_Impulse Yes -- X

Max_Init_Aggressors No 0 X

Repeater_Type
3
 No

(Required

with

[Repeater

Pin])

None X

Rx_Clock_PDF No Clock

Centered

X X

Rx_Clock_Recovery_DCD
3
 No 0 X X

Rx_Clock_Recovery_Dj
3
 No 0 X X

Rx_Clock_Recovery_Mean
3
 No 0 X X

Rx_Clock_Recovery_Rj
3
 No 0 X X

Rx_Clock_Recovery_Sj
3
 No 0 X X

Rx_DCD
3
 No 0 X X

Rx_Dj
3
 No 0 X X

Rx_Noise
3
 No 0 X X

Rx_Receiver_Sensitivity No 0 X X

Rx_Rj
3
 No 0 X X

Rx_Sj
3
 No 0 X X

Supporting_Files
3
 No None X

Tx_DCD No 0 X X

IBIS Version 6.0

228

Reserved Parameter General Rules Allowable Usage

Tx_Dj
3
 No 0 X X

Tx_Jitter No No Jitter X X

Tx_Rj
3
 No 0 X X

Tx_Sj
3
 No 0 X X

Tx_Sj_Frequency
3
 No Undefined X X

Use_Init_Output
2
 No True X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

3) Illegal before AMI_Version 6.0

Table 31 – Allowable Data Types for Reserved Parameters

Reserved Parameter
Data Type

Float UI Integer String Boolean

AMI_Version
1
 X

DLL_ID
3
 X

DLL_Path
3

 X

GetWave_Exists X

Ignore_Bits
2
 X

Init_Returns_Impulse X

Max_Init_Aggressors X

Repeater_Type
3
 X

Rx_Clock_PDF X X

Rx_Clock_Recovery_DCD
3
 X X

Rx_Clock_Recovery_Dj
3
 X X

Rx_Clock_Recovery_Mean
3
 X X

Rx_Clock_Recovery_Rj
3
 X X

Rx_Clock_Recovery_Sj
3
 X X

Rx_DCD
3
 X X

Rx_Dj
3
 X X

Rx_Noise
3
 X

Rx_Receiver_Sensitivity X

Rx_Rj
3
 X X

Rx_Sj
3
 X X

IBIS Version 6.0

229

Reserved Parameter Data Type

Supporting_Files
3
 X

Tx_DCD X X

Tx_Dj
3
 X

Tx_Jitter X

Tx_Rj
3
 X

Tx_Sj
3
 X

Tx_Sj_Frequency
3
 X

Use_Init_Output
2
 X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

3) Illegal before AMI_Version 6.0

Table 32 – Allowable Data Formats for Reserved Parameters

Reserved Parameter

Data Format

Value Range Corner List Increment Steps Gaussian Dual-

Dirac

DjRj Table

AMI_Version1 X

DLL_ID3
X

DLL_Path3
X

GetWave_Exists X

Ignore_Bits X

Init_Returns_Impulse X

Max_Init_Aggressors X

Repeater_Type3
X

Rx_Clock_PDF X X X X

Rx_Clock_Recovery_DCD3
X X X X X X

Rx_Clock_Recovery_Dj3
X X X X X X

Rx_Clock_Recovery_Mean3
X X X X X X

Rx_Clock_Recovery_Rj3
X X X X X X

Rx_Clock_Recovery_Sj3
X X X X X X

Rx_DCD3
X X X X X X

Rx_Dj3
X X X X X X

Rx_Noise3
X X X X X X

Rx_Receiver_Sensitivity X X X X X X

IBIS Version 6.0

230

Reserved Parameter Data Format

Rx_Rj3
X X X X X X

Rx_Sj
3

X X X X X X

Supporting_Files3
 X

Tx_DCD X X X X X X

Tx_Dj3
X X X X X X

Tx_Jitter X X X X

Tx_Rj3
X X X X X X

Tx_Sj3
X X X X X X

Tx_Sj_Frequency3
X X X X X X

Use_Init_Output2
 X

1) Required for AMI_Version 5.1 and later, and illegal before AMI_Version 5.1

2) Illegal for AMI_Version 5.1 and later

3) Illegal before AMI_Version 6.0

Table 33 summarizes the relationships between the different Format and Data Types for Reserved

or Model Specific Parameters.

Table 33 – Allowable Data Types for Format Values

Format
Data Type

Float UI Integer String Boolean Tap

Corner X X X X X X

DjRj X X

Dual-Dirac X X

Gaussian X X

Increment X X X X

List X X X X X X

Range X X X X

Steps X X X X

Table X X X X X

Value X X X X X X

IBIS Version 6.0

231

11 EMI PARAMETERS

There are two sections here: one for a [Component] and one for a [Model].

This section describes the structure of the EMI parameters under a top-level [Component] keyword.

It is used to describe the EMI parameters associated with a [Component]. The parameters shall be

surrounded by the [Begin EMI Component] and [End EMI Component] keywords.

The following keywords are defined:

[Begin EMI Component]

[End EMI Component]

[Pin EMI]

[Pin Domain EMI]

The following subparameters are defined:

Domain

Cpd

C_Heatsink_gnd

C_Heatsink_float

Keyword: [Begin EMI Component]

Required: No

Description: Marks the beginning of the Component EMI parameters.

Sub-Params: Domain, Cpd, C_Heatsink_gnd, C_Heatsink_float

Domain indicates whether the component is digital, analog, or part digital part analog. Analog

circuits are more susceptible to low-level noise. Analog circuits operate at very low signal levels

(mV or uV) and can contain high gain amplifiers. In contrast, digital circuits operate at relatively

large signal levels (compared to analog circuits).

The syntax for Domain is:

Domain Domain_value

Where Domain_value is an enumerated argument, and is one of:

Digital, Analog, Digital_analog

This subparameter is optional. If not entered, the default is Digital.

Cpd is the power dissipation capacitance parameter. Cpd (Power Dissipation Capacitance) is the

internal parasitic capacitance (e.g., gate-to-source and gate-to-drain capacitance) plus the

equivalent capacitance associated with the through currents when both transistors (n-channel and p-

channel) are momentarily conducting.

Cpd is typically for CMOS devices, and helps provide a more accurate estimation of the power bus

current, and therefore the noise voltage on the power bus. If the high frequency noise on the power

bus (due to switching of digital circuits) is known, then the radiation can be calculated.

Sometimes Iccd (Dynamic power supply current) is found in databooks. It is normally given for

FACT families. Iccd is specified in units of mA/MHz.

Cpd can be calculated from Iccd by the equation:

IBIS Version 6.0

232

Cpd (nF) = Iccd (mA/MHz) / Vcc (V).

The syntax for Cpd is:

Cpd = capacitance_value

The units of capacitance_value are farads.

This subparameter is optional. If not entered, the default is 0.0 F.

C_Heatsink_Float and C_Heatsink_Gnd define the heatsink capacitance and connection conditions.

C_Heatsink_Float indicates that the heatsink is floating, and C_Heatsink_Gnd indicates that the

heatsink is grounded.

Internal currents inside a (high speed) IC can be closely coupled onto a heatsink. As the heatsink is

physically much larger than the IC silicon chip and bond wires, it is a more efficient radiator.

Knowing the capacitance of the heatsink the radiated electric field can be estimated.

Only one of these subparameters can be defined. It is not legal to define both. It is legal to omit

both. In this case it means that a heatsink is not present.

The subparameter takes one argument: the heatsink capacitance

The syntax for Heatsink_cap is:

C_Heatsink_float = capacitance_value

C_Heatsink_gnd = capacitance_value

The units for capacitance_value are farads.

This subparameter is optional. If not entered, the default is that the component does not have a

heatsink.

Keyword: [End EMI Component]

Required: No

Description: Marks the end of the Component EMI parameters.

Example:

[Begin EMI Component]

Domain Digital

Cpd = 6.4pF

C_Heatsink_gnd = 3.4pF

[End EMI Component]

Keyword: [Pin EMI]

Required: No

Description: Specifies the EMI parameters for a Pin.

Sub-Params: domain_name, clock_div

Usage Rules: Each line must contain three columns. The first column shall contain the pin name.

This pin name shall match a pin name in the [Pin] keyword. (The pin name is the first column in

the [Pin] record.)

IBIS Version 6.0

233

The second column is the domain name. This specifies the clock domain for that pin. This is used

by [Pin Domain EMI]. The field should be set to NA if unused.

The default for domain_name is that the percentage of power used is 100%.

The third column is the clock division. This is the ratio of the frequency at this pin to the reference

pin. The reference pin is always set to “1.0”. The ratio is a floating point number. The choice of the

reference pin does not matter as this information is pin to pin ratios. It is suggested that the pin with

the maximum frequency is chosen as the reference.

The field should be set to NA if unused.

The default for clock_div is 1.0

Column length limits are:

pin_name 5 characters max

domain_name 20 characters max

clock_div 5 characters max

It is not a requirement to specify every pin. An undefined pin will default to 100% power usage for

Domain_name, and 1.0 for clock_div.

Keyword: [Pin Domain EMI]

Required: No

Description: Specifies the percentage of power used in each clock domain.

Sub-Params: percentage

Usage Rules: Each line must contain two columns. The first column must contain the

domain_name. This name must match a domain name in the [Pin EMI] keyword. (The domain

name is the second column in that record.)

The percentage represents a user definable percentage of the power used by that domain. It is an

integer in the range 0 < percentage =< 100

Column length limits are:

domain_name 20 characters max

percentage 5 characters max

Example:

[Begin EMI Component]

Domain Digital

Cpd = 6.4pF

|

[Pin EMI] domain_name clock_div

 4 MEM 0.5

 5 MEM 0.5

 7 NA 0.5 | domain_name defaults to 100%

 8 RIOG NA | clock_div defaults to 1.0

14 CPU 1.0

15 RIOG 0.5

|

IBIS Version 6.0

234

[Pin Domain EMI] percentage

 CPU 40

 MEM 30

 RIOG 30

|

[End EMI Component]

This section describes the structure of the EMI parameters under a top-level [Model] keyword. It is

used to describe the EMI parameters associated with a [Model]. The parameters must be

surrounded by the [Begin EMI Model] and [End EMI Model] keywords.

The following keywords are defined:

[Begin EMI Model]

[End EMI Model]

The following subparameters are defined:

Model_emi_type

Model_Domain

Keyword: [Begin EMI Model]

Required: No

Description: Marks the beginning of the Model EMI parameters.

Sub-Params: Model_emi_type, Domain

Model_emi_type indicates whether the model (for this pin) is a ferrite or not.

The syntax for Model_emi_type is:

Model_emi_type Model_emi_type_value

Where Model_emi_type_value is an enumerated argument, and is one of:

Ferrite, Not_a_ferrite

If not entered (the default), the model is Not_a_ferrite.

Model_Domain indicates whether the model is digital or analog. This is only used if the

[Component EMI] Domain is set to Digital_analog. If the [Component EMI] Domain is set to

anything else, Model_Domain is ignored.

The syntax for Domain is:

Model_Domain Domain_value

Where Domain_value is one of:

Digital, Analog

If not entered, the default is to use the [Component EMI] Domain setting and its default.

IBIS Version 6.0

235

Keyword: [End EMI Model]

Required: No

Description: Marks the end of the Model EMI parameters.

Example:

[Begin EMI Model]

Domain Analog

Model_emi_type Ferrite

[End EMI Model]

